

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation & Purification Reviews

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597294>

Sterically-Hindered Amines for Acid-Gas Absorption

G. Sartori^a; W. S. Ho^a; D. W. Savage^a; G. R. Chludzinski^b; S. Wlechert^c

^a Exxon Research and Engineering Company, Annandale, New Jersey ^b Exxon Research and Engineering Company, Exxon Engineering, Florham Park, New Jersey ^c Exxon U.S.A., Baton Rouge Refinery, Baton Rouge, Louisiana

To cite this Article Sartori, G. , Ho, W. S. , Savage, D. W. , Chludzinski, G. R. and Wlechert, S.(1987) 'Sterically-Hindered Amines for Acid-Gas Absorption', *Separation & Purification Reviews*, 16: 2, 171 — 200

To link to this Article: DOI: 10.1080/03602548708058543

URL: <http://dx.doi.org/10.1080/03602548708058543>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

STERICALLY-HINDERED AMINES FOR ACID-GAS ABSORPTION

G. Sartori, W. S. Ho, D. W. Savage,
Exxon Research and Engineering Company, Corporate Research
Route 22 East, Annandale, New Jersey 08801

G. R. Chludzinski
Exxon Research and Engineering Company, Exxon Engineering,
Park Avenue, Florham Park, New Jersey 07932

S. Wiechert
Exxon U.S.A., Baton Rouge Refinery
Baton Rouge, Louisiana 70821

ABSTRACT

This paper reviews sterically-hindered amines for removal of acid gases such as CO_2 and H_2S from gaseous streams. Steric hindrance of amines reduces carbamate stability. Moderately hindered amines are characterized by high rates of CO_2 absorption and high capacities for CO_2 . The moderately hindered amine in use with organic solvent has considerably higher capacity than the conventional amine-solvent system for simultaneous removal of CO_2 and H_2S from synthesis gas and natural gas. A severely-hindered-amine absorbent, characterized by a very low rate of CO_2 absorption, has much higher capacity and selectivity than the current industry standard, methyldiethanolamine, for selective removal of H_2S from CO_2 -containing streams. Use of hindered amines represents new advances in gas treating. Hindered amines save energy and capital in gas treating significantly. In addition, hindered amines used commercially have much better stability than

conventional amines. As of today, fourteen commercial plants use hindered amines.

INTRODUCTION

Acid-gas removal from gaseous streams (gas sweetening) is a very common process and covers broad processing areas in refining, chemical and producing operations⁽¹⁻⁵⁾. As illustrated in Figure 1, the fuel gases in a refinery are generally at low pressure with the sum of CO₂ and H₂S partial pressures of about 70 kPa or less (70 kPa is about 10 psi). The gases are high in H₂S and low in CO₂ and have a CO₂ to H₂S mole ratio of about 0.1. These gases are treated to remove H₂S in order to satisfy environmental combustion standards.

The tail gas from a sulfur plant has a CO₂ to H₂S ratio of about 10. The tail gas is treated for removing H₂S in order to increase sulfur recovery and to meet environmental regulations. The low-Joule fuel gas produced in Exxon's FLEXICOKING resid conversion process has a similar mole ratio. The gas is desulfurized prior to combustion to reduce sulfur dioxide emission.

In a hydrogen plant, the steam reformer converts methane or other hydrocarbon feed to hydrogen and CO₂. CO₂ is the only acid gas, and it has a pressure of about 350 kPa. This CO₂ is removed to satisfy H₂ purity specifications. Similar gas treating requirements are found in ammonia plants and in synthesis gas generators.

Gases associated with producing operations, such as natural gas, and synthetic fuels, such as coal gasification and shale oil, cover broad ranges of both acid gas composition and pressure.

Very often the gas treating agents are amines, such as monoethanolamine (MEA), diethanolamine (DEA), diisopropanolamine (DIPA) and N-methyldiethanolamine (MDEA). They are used in aqueous solution, in aqueous organic medium or in combination with aqueous

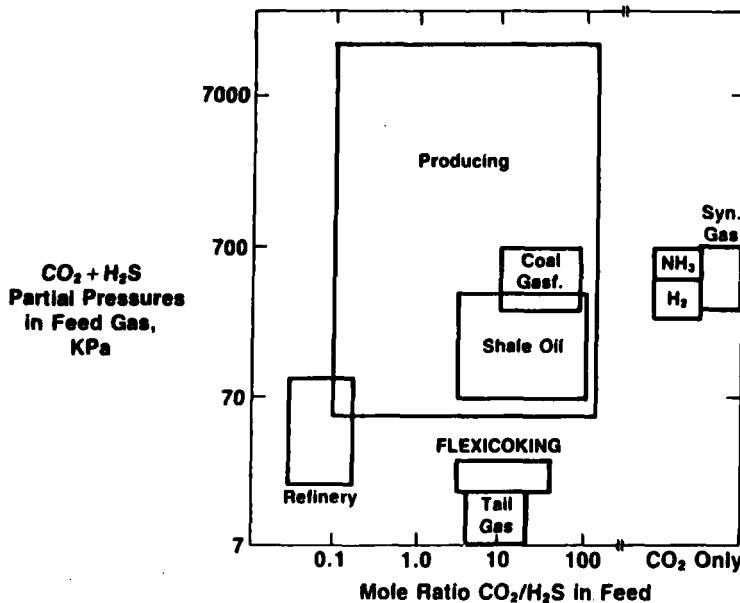


FIGURE 1
Gas treating covers broad processing areas

potassium carbonate. Worldwide, there are hundreds of gas sweetening units.

Most gas treating processes use an integrated absorber-regenerator flowsheet as shown in Figure 2. The impure gas to be treated is contacted countercurrently with the amine solution in a tower, and the treated gas leaves from the top. The rich amine solution is transferred to the desorber (regenerator), where a temperature increase and a pressure decrease cause the acid gases to be desorbed and evolve from the top of the tower. The regenerated amine solution is pumped back to the top of the absorber. Energy is required to pump the solution around and to regenerate it.

Hindered amines show considerable advantages over the conventional alkanolamines listed above. Moderately hindered

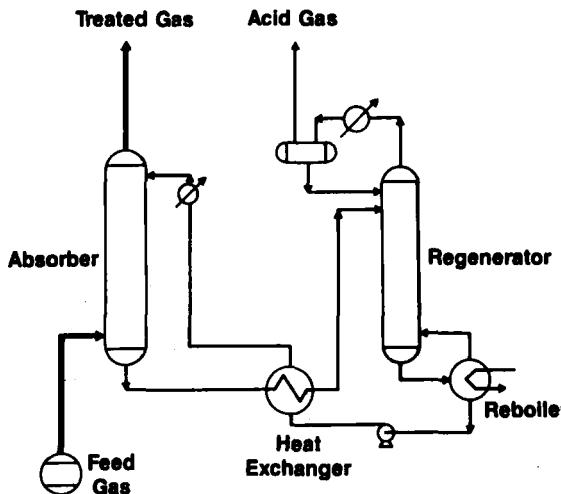
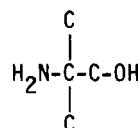
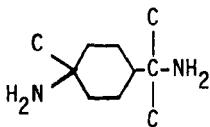


FIGURE 2
Typical acid gas removal process

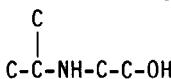
amines lead to better capacity for CO_2 and higher absorption rate. Severely hindered amines have better selectivity for H_2S over CO_2 compared to the conventional MDEA.


Hindered amines represent the result of cooperative efforts by various Exxon affiliates. The FLEXSORB® SE solvent, based on the use of a severely-hindered amine, won the IR-100 award in 1985 and was one of the five finalists for the 1985 Kirkpatrick award. As of today, fourteen commercial plants use hindered amines.

1. Definition and Examples

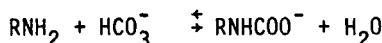

A hindered amine has a bulky alkyl group attached to the aminogroup. More specifically, we define a hindered amine as belonging to either of these classes:

- 1) a primary amine in which the aminogroup is attached to a tertiary carbon


2) a secondary amine in which the aminogroup is attached to at least one secondary or tertiary carbon.

2-amino-2-methyl-1-propanol

1,8-p-menthanediamine



2-isopropylaminoethanol

In general, only aliphatic and cycloaliphatic amines are suitable for gas treating. Aromatic amines, due to their lower basicity, lead to low absorption capacities and rates. Besides the aminogroup, the amine must contain another functional group to increase solubility and reduce volatility, e.g. a hydroxyl or carboxylic group.

2. Amine Carbamate Stability as a Function of Steric Hindrance

The low tendency of hindered amines to form carbamates owing to the bulkiness of the substituent attached to the aminogroup has been observed by previous investigators. In 1957, Jensen⁽⁶⁾ studied the stabilities of the carbamate of butylamines. Addition of barium chloride to an amine solution containing carbon dioxide caused the precipitation of carbonate and bicarbonate, whereas carbamate ions remained in solution. After separation of the precipitate, heating the solution transformed the carbamate ions into carbonate ions, with consequent precipitation. Using that technique, Jensen determined values of the equilibrium constant K_c for carbamate hydrolysis written from right to left; they are given in Table I.

$$K_c = \frac{[\text{RNHC}(\text{O})\text{O}^-]}{[\text{RNH}_2][\text{HCO}_3^-]}$$

TABLE I
Carbamate Stability Equilibrium Constants at 18°C (6)

Amine	K_c
CH ₃ -CH ₂ -CH ₂ -CH ₂ -NH ₂	63
$ \begin{array}{c} \text{CH}_3 \\ \\ \text{CH}_3-\text{C}-\text{NH}_2 \\ \\ \text{CH}_3 \end{array} $	7

TABLE II
Hindered Amines Unable to Form Carbamates

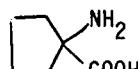
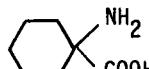
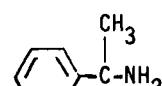
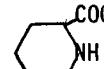




2-amino-2-methyl-1-propanol	$ \begin{array}{c} \text{CH}_3 \\ \\ \text{HO}-\text{CH}_2-\text{C}-\text{NH}_2 \\ \\ \text{CH}_3 \end{array} $
2-amino-2-methylpropionic acid	$ \begin{array}{c} \text{CH}_3 \\ \\ \text{HOOC}-\text{C}-\text{NH}_2 \\ \\ \text{CH}_3 \end{array} $
1-amino-1-cyclopentanecarboxylic acid	
1-amino-1-cyclohexanecarboxylic acid	
2-amino-2-phenylpropionic acid	
pipecolinic acid	

TABLE III

Carbamate Stability Constants for Hindered and Conventional Amines by Carbon-13 NMR

Amino alcohol	K_c at 40°C
HO-CH ₂ -CH ₂ -NH ₂	12.5
$ \begin{array}{c} \text{HO-CH}_2\text{-CH}_2\text{-NH} \\ \\ \text{HO-CH}_2\text{-CH}_2\text{-} \\ \\ \text{CH}_3 \\ \\ \text{HO-CH}_2\text{-C-NH}_2 \\ \\ \text{CH}_3 \end{array} $	2.0
	<0.1

Table I shows that the carbamate of the hindered tert. butylamine is much less stable than that of the unhindered n-butylamine.

In 1964 Frahn and Mills⁽⁷⁾ showed that certain amines did not form any carbamate under their experimental conditions, see Table II, and attributed that to steric hindrance.

Carbamate stability can be measured by carbon-13 nuclear magnetic resonance (Melchior⁽⁸⁾). Table III shows significant differences in carbamate stability between hindered and conventional amines. The unhindered monoethanolamine and diethanolamine show values of K_c of 12.5 and 2.0, respectively, whereas the hindered 2-amino-2-methyl-1-propanol has a K_c lower than .1.

Space-filling molecular models clearly show the dramatic differences in carbamate stability between hindered and conventional amines.

Figures 3 and 4 show that rotation around the N-COO⁻ bond is unrestricted in the carbamate of the unhindered n-butylamine,

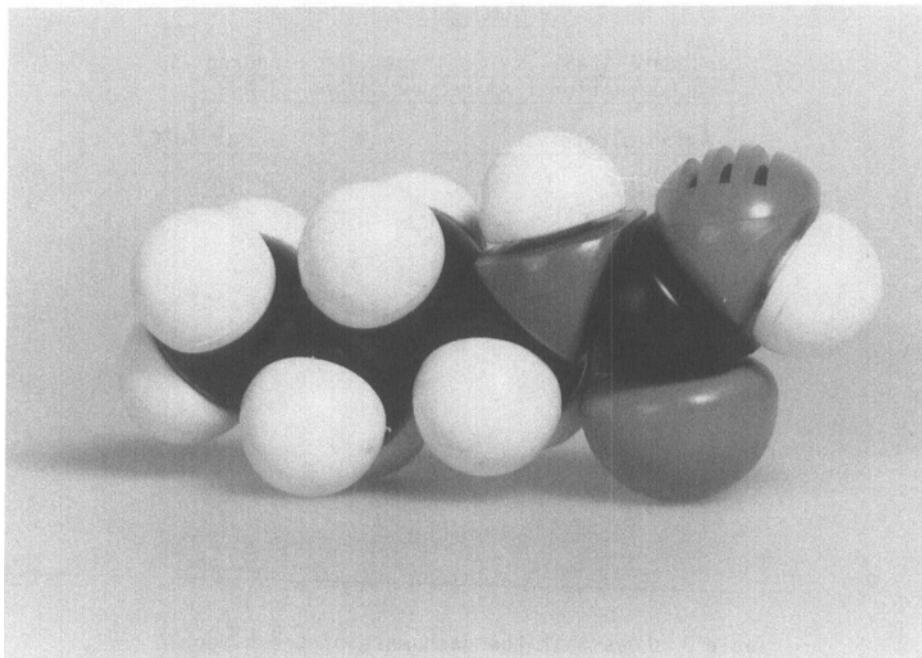
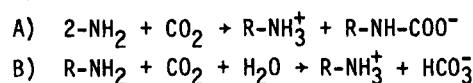



FIGURE 3
Molecular model of carbamate of n-butylamine

whereas rotation around the N-COO⁻ bond in the carbamate of the hindered tert. butylamine is only possible if the bulky substituent is compressed. Consequently, the carbamate of tert. butylamine is much less stable than that of n-butylamine.

3. CO₂-Amine Reaction Stoichiometry, Vapor-Liquid Equilibrium

Carbamate stability has an important effect on the CO₂-amine reaction stoichiometry. When CO₂ is absorbed in an amine solution, two reactions can occur:

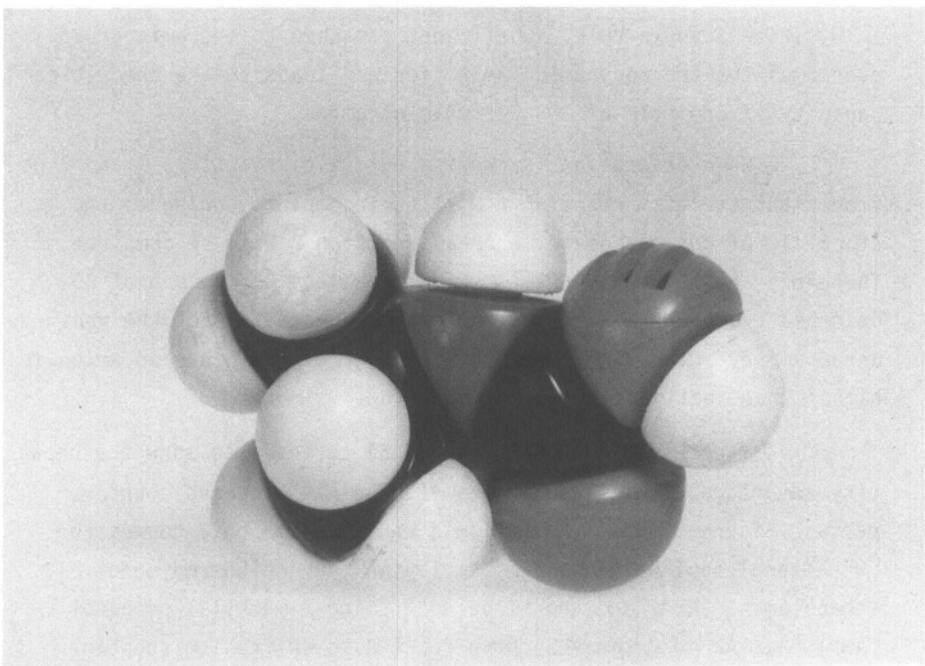


FIGURE 4
Molecular model of carbamate of tert-butylamine

Whether reaction A or B occurs depends on the stability of the carbamate. If the amine is not hindered, i.e. if R is not bulky, the carbamate will be stable and reaction A will occur, which means a half mole of CO_2 absorbed per mole of amine. If the amine is hindered, i.e. if R is bulky, the carbamate will be unstable and reaction B will occur, which means one mole of CO_2 absorbed per mole of amine. We see how the bulkiness of R has an important effect on the stability of the carbamate and consequently on the stoichiometry of the reaction with CO_2 . The formation of a stable carbamate is the thermodynamic limitation to the capacity of conventional amines for CO_2 removal.

Placing a bulky substituent attached to the aminogroup overcomes the thermodynamic limitation and leads to the theoretical capacity of one mole of CO_2 per mole of amine.

When desorption is carried out, i.e. reactions A and B go from right to left, reaction A will be incomplete, owing to the stability of the carbamate, whereas reaction B will be complete. Therefore, both the amount of CO_2 absorbed and the amount of CO_2 desorbed are higher in the case of the hindered than of the unhindered amine. Otherwise said, the capacity of the hindered amine is higher than that of the unhindered amine.

Vapor-liquid equilibrium (VLE) curves also show the capacity advantage of hindered amines vs. their unhindered counterparts. Figure 5 shows vapor-liquid equilibrium (VLE) curves for CO_2 -aminoalcohol-water systems employing the unhindered monoethanolamine (MEA) and the hindered 2-amino-2-methyl-1-propanol (AMP)⁽⁹⁾. At 40°C the VLE curve for AMP is shifted to substantially higher loadings (the loading is defined as moles of CO_2 absorbed per mole of amine) as compared to MEA, especially at high CO_2 partial pressures, in agreement with the previous considerations about the reaction stoichiometry. At 120°C, a temperature close to that of regeneration, the VLE curve for AMP is displaced to lower loadings as compared to MEA, also in agreement with the previous considerations about the reaction stoichiometry. Based on carbamate stability, hindered amines can be divided into moderately and severely hindered. Moderately hindered amines form unstable carbamates that are readily hydrolyzed; severely hindered amines do not form any carbamate.

The degree of steric hindrance can be expressed quantitatively by means of Taft's steric hindrance parameter $\sum E_s$ ⁽¹⁰⁾. Unhindered amines have $\sum E_s < 1.32$. Moderately hindered amines have $\sum E_s$ comprised between 1.32 and 2.0. Severely hindered amines have $\sum E_s > 2.0$.

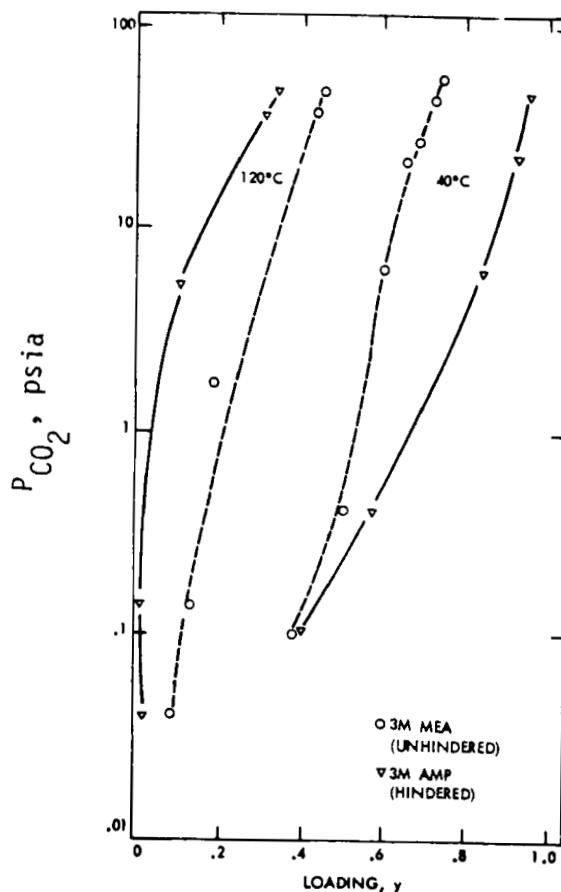


FIGURE 5

Measured PCO_2 vs. Loading curves for aqueous MEA and AMP

4. Effect of Steric Hindrance on CO₂-Amine Reaction Rate

In 1965, M. M. Sharma⁽¹¹⁾ published values of second-order rate constants k_{AM-CO_2} for the reaction of CO₂ with a large number of amines. Dividing the amines into classes and plotting $\log_{10} k_{AM-CO_2}$ vs. pKa, some interesting correlations are observed, Figures 6, 7, 8 and 9. In the case of primary amines (Figure 6) at

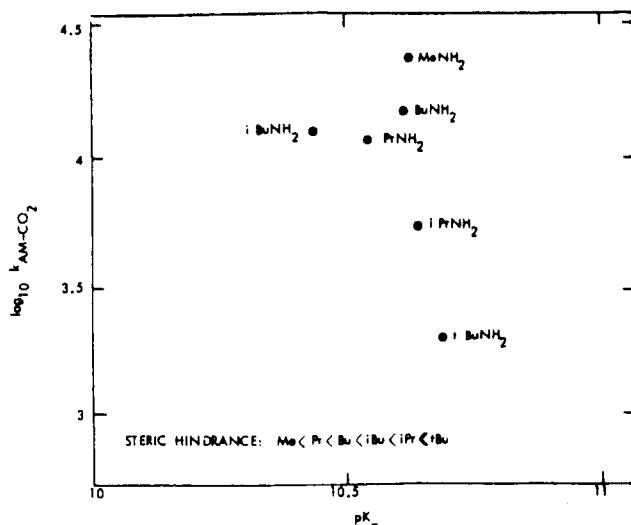


FIGURE 6
Effect of hindrance on CO_2 rate constant for primary amines

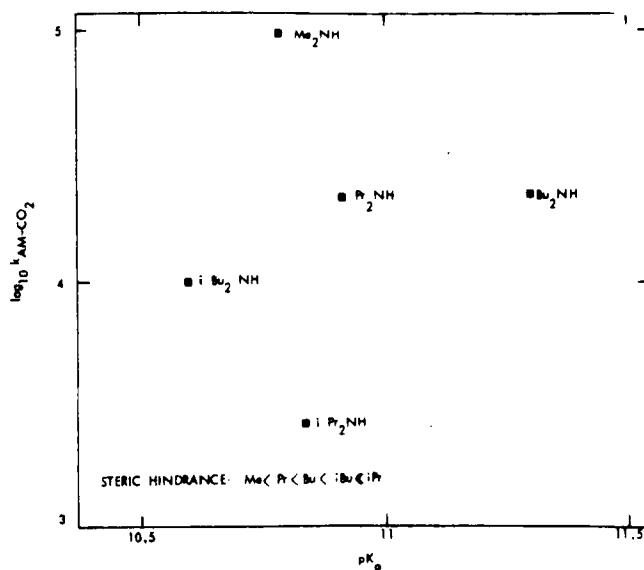


FIGURE 7
Effect of hindrance on CO_2 rate constant for secondary amines

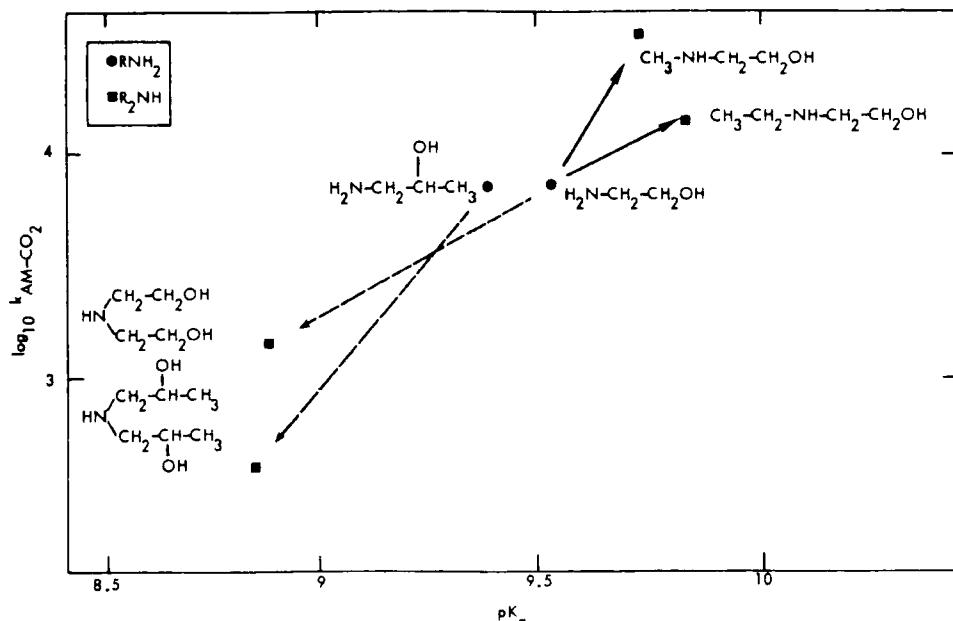


FIGURE 8
Effect of increasing steric hindrance on CO_2 rate constant
for alkyl amines

constant pK_a , the rate constant decreases if steric hindrance increases. The same happens with secondary amines, Figure 7. In going from a primary to the corresponding secondary amine, Figure 8, the rate constant increases only with a non-bulky substituent, e.g. with the methylamines; in the case of bulky substituents, e.g. with the isopropylamines, the rate constant decreases in going from the primary to the secondary amine.

We can observe that diisobutylamine has a lower rate constant than isobutylamine, i.e., going from the primary to the secondary amine implies a considerable steric hindrance increase. This means that branching at the β carbon has little effect on the

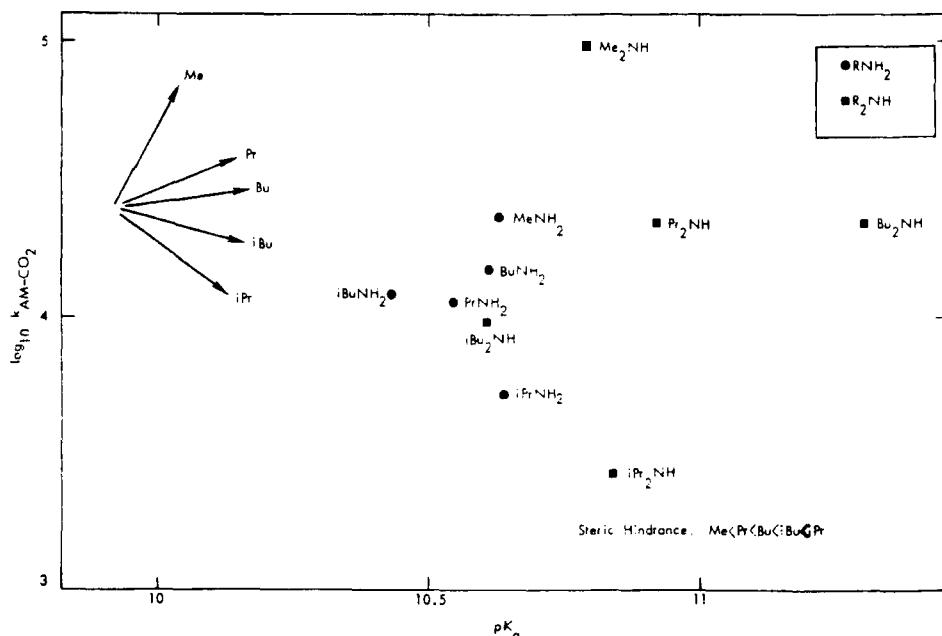
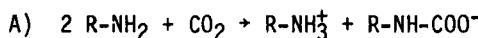


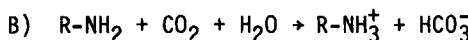
FIGURE 9
CO₂ rate constants for aqueous amino alcohol reactions

rate constant in the case of the primary amine, but a significant effect in the case of the secondary amine.

Looking at the aminoalcohols, Figure 9, we see that going from a primary amine, in this case monoethanolamine, to its secondary derivatives, in this case 2-methylaminoethanol and 2-ethylaminoethanol, the rate constant increases, especially in the case of the smaller substituent, i.e. the methyl. Although the rate constant for monoisopropanolamine is nearly the same as that for monoethanolamine, the rate constant for diisopropanolamine is definitely lower than that of diethanolamine. The explanation is similar to that proposed for the isobutylamines. The isopropanol group is mildly bulky, therefore it does not decrease the rate


TABLE IV
Amine Steric Hindrance Reduces CO₂ Reaction Rate

Amines	CO ₂ Reaction Rate Constant at 40°C (Liter/Mole/Sec)
• Unhindered amines	
- dimethylamine	7.9×10^5
- dipropylamine	7.1×10^4
• Moderately hindered amines	
- diisopropylamine	7.9×10^3
• Severely hindered amines	$\sim 1.3 \times 10^2$


constant appreciably in the case of the primary amine, but it does decrease it substantially in the case of the secondary amine.

We have determined the rate constants for the reaction of CO₂ with some typical secondary amines, Table IV. We see that the increase in steric hindrance accompanying the transition from dimethylamine to dipropylamine is enough to reduce the rate constant by an order of magnitude. The rate constant decreases by nearly another order of magnitude in going from dipropylamine to diisopropylamine. Finally, the rate constant decreases by more than another order of magnitude in going from diisopropylamine to a severely hindered amine.

As mentioned before, an unhindered amine reacts with CO₂ according to reaction A:

This means that two moles of amine are tied up for every mole of CO₂ absorbed. On the other hand, a hindered amine reacts according to reaction B:

This means one mole of amine tied up per mole of CO₂ absorbed. As a consequence, at a certain CO₂/amine ratio the fraction of amine tied up will be lower, or in other words, the fraction of free amine will be higher, if the amine is hindered. Therefore, if we look at the expression for the CO₂-amine reaction rate:

$$V = k_{\text{AM-CO}_2} [\text{Amine}][\text{CO}_2]$$

we know that an increase in steric hindrance will cause a decrease in k_{AM-CO_2} , but for a moderate degree of hindrance that will be compensated by an increase in free-amine concentration. However, a severely hindered amine has a very low rate constant and consequently a very low CO_2 absorption rate.

5. Areas of Use of Hindered Amines, Processes

Unlike CO_2 , H_2S reacts with an amine at a rate unaffected by steric hindrance. The reason is that the reaction is a simple protonation: the rate of addition of a proton to an aminogroup is not affected by the bulkiness of the substituents. As a consequence, moderately hindered amines, characterized with high rates of CO_2 absorption and high capacities for CO_2 , are suitable for the removal of CO_2 and the bulk, non-selective removal of CO_2 and H_2S . Severely hindered amines, characterized with a very low rate of CO_2 absorption, are suitable for the kinetically selective removal of H_2S in the presence of CO_2 (Figure 10).

Moderately hindered amines can be used in aqueous solution, in aqueous-organic medium and in combination with aqueous potassium carbonate. Severely hindered amines are generally used in aqueous solution, but sometimes they can be used in aqueous-organic medium.

6. Hindered-Amine-Based Processes

Two hindered-amine-based gas treating solvents are in commercial use:

FLEXSORB® SE, based on an aqueous severely-hindered amine, selectively removes H_2S in the presence of CO_2 .

FLEXSORB® PS, based on a moderately-hindered amine in aqueous-organic medium, removes CO_2 and H_2S in a non-selective way.

7. FLEXSORB® SE

Selective H_2S removal is becoming increasingly important, since there will be more gases with low H_2S/CO_2 ratios, such as

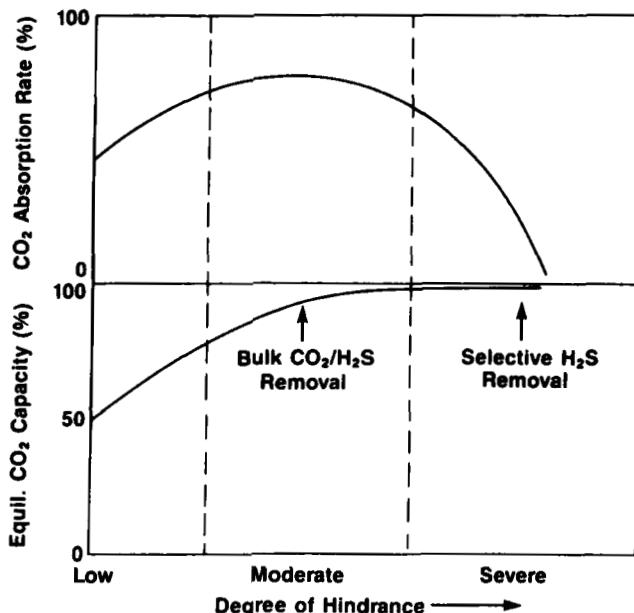


FIGURE 10

Steric hindrance exploitable for both CO_2 removal and selective H_2S removal

sulfur plant tail gases, certain natural gases, gases produced in Exxon's FLEXICOKING process and in coal gasification. It is necessary to concentrate H_2S from these streams before feeding to a Claus plant.

Well known processes, Stretford and MDEA, are in commercial use for the selective removal of H_2S in the presence of CO_2 . The Stretford process is based on the oxidation of H_2S by means of V^{+5} and an anthraquinone derivative, i.e. it is thermodynamically selective. The aqueous methyldiethanolamine (MDEA) process takes advantage of the difference in absorption rates between H_2S and CO_2 , i.e. it is kinetically selective. Use of a selective amine treating agent, rather than a non-selective agent such as monoethanolamine or diethanolamine, results in lower

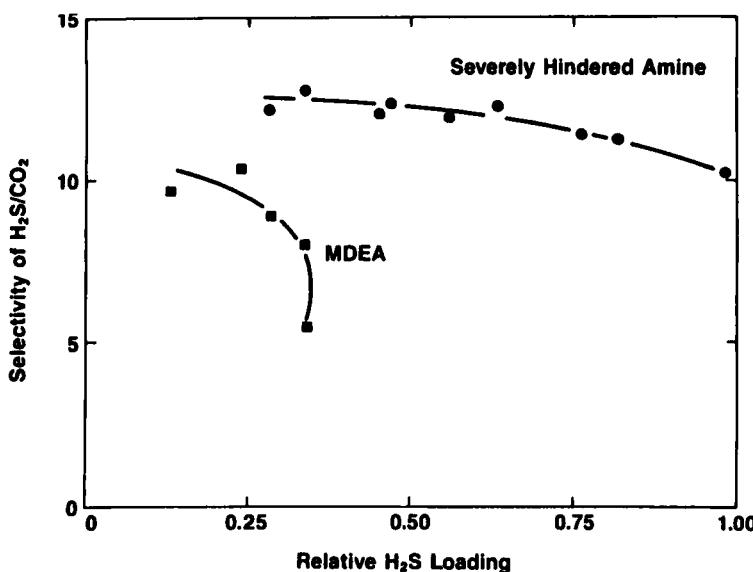


FIGURE 11

Severely hindered amine outperforms MDEA for selective H₂S removal

amine circulation rate, smaller equipment and lower operating costs. This occurs because the amine preferentially absorbs H₂S, therefore is not tied up in unnecessary CO₂ removal.

Both the Stretford and MDEA processes have some limitations. The Stretford process produces low-quality sulfur, and side reactions lead to formation of thiocyanides and thiosulfates which are difficult to dispose of. A drawback of the aqueous methyldiethanolamine process is that it has a good selectivity only at low loadings, i.e. selectivity decreases rapidly as H₂S and CO₂ are absorbed. We have shown before that severely-hindered amines are characterized by a very low rate of reaction with CO₂ and a very high rate of reaction with H₂S, therefore they are suitable for the kinetically selective removal of H₂S in the presence of CO₂. Exxon's FLEXSORB® SE amine, besides showing good H₂S selec-

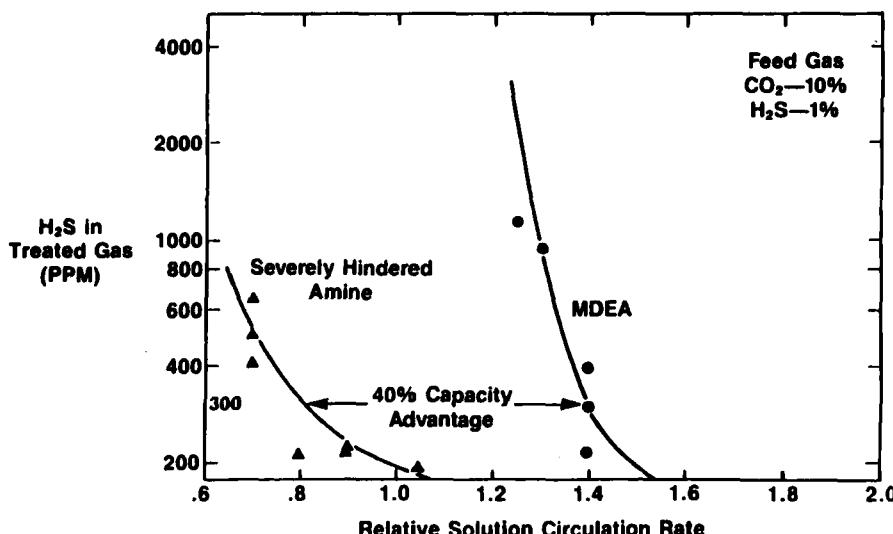


FIGURE 12
Severely hindered amine commercial data show significant capacity advantage

tivity and high capacity, has high solubility, low volatility, excellent chemical stability, no corrosivity and low foaminess. Figure 11 shows that the severely-hindered FLEXSORB® SE outperforms MDEA as regards selectivity at high loading. Selectivity is defined as:

$$\text{selectivity} = \frac{\text{H}_2\text{S}/\text{CO}_2 \text{ ratio in solution}}{\text{H}_2\text{S}/\text{CO}_2 \text{ ratio in gas phase}}$$

The advantage of FLEXSORB® SE over MDEA has been confirmed in commercial tests^(12,13). Figure 12 shows the results. All data are at constant ratio of regeneration steam rate to amine solution circulation rate (Kg steam/m³ of amine solution). FLEXSORB® SE shows a 40% capacity advantage over MDEA at the design point of 300 ppm of H₂S in the treated gas. Since

TABLE V
FLEXSORB® SE is Economically Attractive

Basis

- Desulfurization of 7.9M m³/d (280 MSCF/D) low joule gas
- Desulfurization of 1.0M m³/d(35 MSCF/D) Claus tail gas
- Total sulfur removed, 0.125 Gg/d(123 T/D)

	<u>FLEXSORB® SE, % of MDEA</u>
● Amine circ. rate	41%
● Steam rate	51%
● Regenerator	
- Diameter	69%
- Height	87%
● Investment	74%
● Operating Cost	57%

all data are at a constant ratio of regeneration steam to amine solution volume, this 40% capacity advantage translates into a 40% energy saving. In a grass-roots design this 40% capacity advantage results in significantly smaller equipment and lower investment. An example is given in Table V.

Some plants use diisopropanolamine (DIPA) rather than MDEA for the selective removal of H₂S. Table VI shows a retrofit application in which FLEXSORB® SE is used to replace DIPA in a small tail gas cleanup unit. The objective is to achieve energy savings. FLEXSORB® SE requires only 32% of the DIPA circulation rate and only 25% of the DIPA reboiler duty.

8. FLEXSORB® PS

FLEXSORB® PS consists of a moderately hindered amine in an organic solvent plus water. The proportions of the three ingredients depend on the acid gases to be removed and the degree of purification desired. Compared to the conventional non-hindered amines with which it competes, FLEXSORB® PS is considerably more stable under the operating conditions. In order to confirm the

TABLE VI
FLEXSORB® SE Incentives Versus DIPA Are Very Large

Basis:

- Desulfurization of 3.2 MSCF/D Claus Tail Gas to 500 vppm H₂S
- Feed Conditions: 16.2 psia, 120°F

<u>Component</u>	<u>Mole %</u>
N ₂	76.9
H ₂ O	10.2
CO ₂	9.8
H ₂ S	1.6
H ₂	1.5
	<u>100.0</u>

	<u>FLEXSORB® SE, % of DIPA</u>
Solution Circulation Rate	32%
Regenerator Reboiler Duty	25%

laboratory results, a severe degradation test was carried out in parallel with a conventional amine-solvent system^(13,14,15). In the test, each solution was allowed to equilibrate at 255°F with a natural gas slipstream containing 82 psia of H₂S and 37.4 psia of CO₂. After only 15 days of exposure, Figure 13, about 90% of the initial amine contained in the conventional amine-solvent system had undergone degradation. During that same period of time the FLEXSORB® PS amine showed only slight degradation.

Development of FLEXSORB® PS absorbent involved extensive pilot unit testing. Test work was carried out to verify and quantify the capacity and mass transfer advantages observed in the laboratory for hindered amines and to confirm operability regarding foaming, corrosion, and amine degradation. Comparative tests at similar conditions were carried out between FLEXSORB® PS and a conventional amine-solvent system.

The pilot plant used contained the basic parts of a conventional gas treating plant: absorber, regenerator, reboiler and lean solution pump. A feed gas saturator and overhead condensers/knockouts were used to maintain solution water balance. A gas

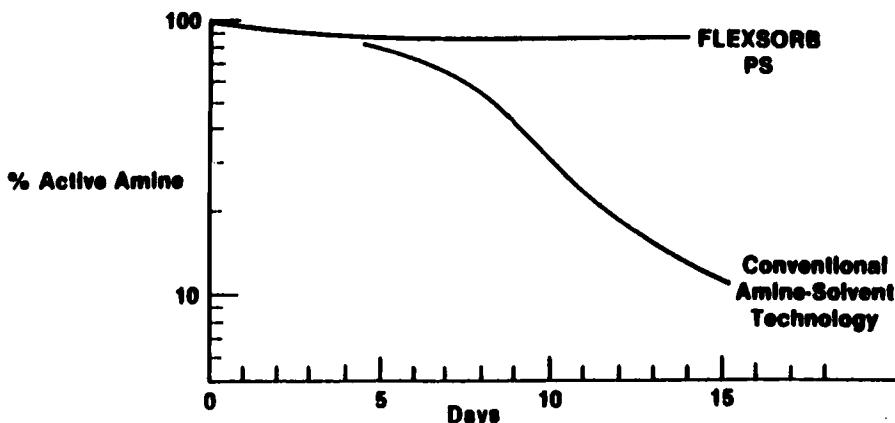


FIGURE 13
Stability demonstrated under severe field conditions

manifold allowed mixing H_2S , CO_2 and N_2 over a wide range of concentrations. N_2 was used to simulate the "non-acid gas" components. Both the absorber and regenerator were packed columns equipped with intermediate liquid inlets which allowed varying the packing height. On-line gas analyses by gas chromatography and data logging provided data for material balance and performance calculations.

The capacity advantages discussed earlier were demonstrated in the pilot unit by operating at the rich end pinch. The minimum solution rate can be determined by holding the feed gas rate constant and decreasing the solution rate until the acid gas concentration in the absorber treated gas rises dramatically. At this pinched condition, the solution has the maximum acid gas loading and the mass transfer driving force at the absorber bottom approaches zero. Regeneration steam during these tests would be at a level to provide adequate regeneration. Rich end capacity tests were completed for FLEXSORB® PS and a conventional amine-solvent system. Solution compositions were chosen to give equivalent amine

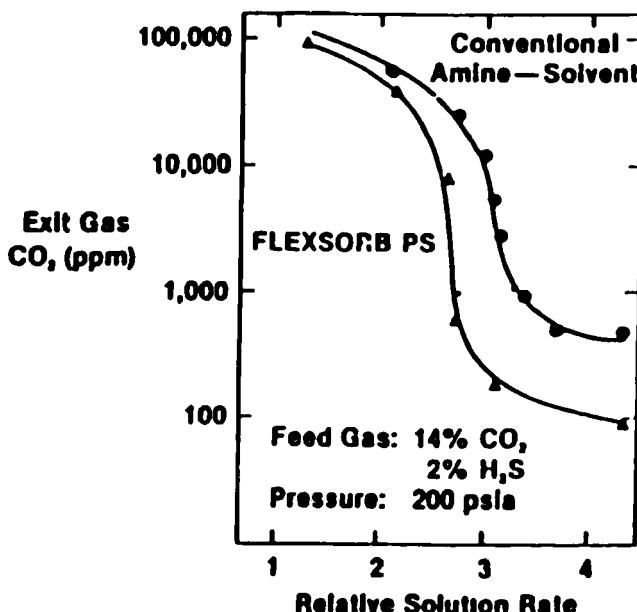


FIGURE 14
Capacity advantage for FLEXSORB® PS absorbent

normalities and physical solvent concentrations. In both cases feed gas compositions and process conditions were similar. As shown in Figure 14 at a CO₂ leak of 100 vppm, the FLEXSORB® PS solvent operated at the same steam rate in terms of lbs of steam per gallon of solution circulation; the lower circulation rate translates into a direct steam savings.

Mass transfer data were obtained by operating with a short absorber thereby avoiding equilibrium pinches at either end of the absorber. As a result large driving forces exist across the absorber so that accurate mass transfer coefficients can be determined. Overall mass transfer coefficients were determined based on log mean driving forces and gas phase partial pressures. Figure 15 compares mass transfer coefficients for CO₂ absorption for the

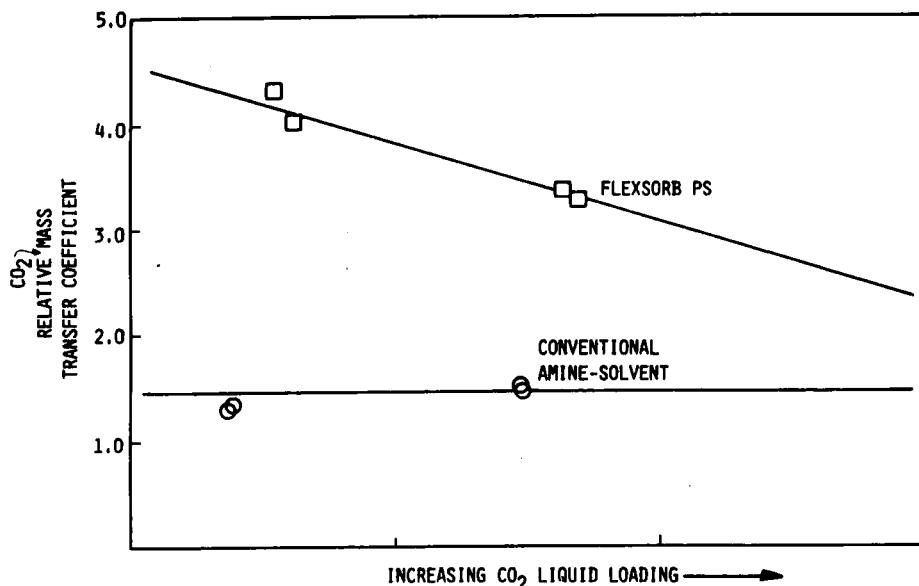


FIGURE 15

Increased CO_2 mass transfer rate of FLEXSORB® PS absorbent vs. conventional amine-solvent system

FLEXSORB® PS absorbent and a conventional amine-solvent system. The mass transfer coefficient for FLEXSORB® PS exhibited a strong dependence on average loading indicating the effect of the free amine concentration on mass transfer. In general, the observed CO_2 mass transfer rate for FLEXSORB® PS was a factor of 2 to 3 higher than that observed for a conventional amine-solvent system.

The first commercial use of FLEXSORB® PS absorbent was at Exxon Chemical Americas' plant in Baton Rouge, Louisiana. FLEXSORB® PS absorbent replaced a conventional amine solvent system in order to achieve energy savings, increase capacity and avoid solution reclaiming. The plant removes H_2S and CO_2 from a partial oxidation synthesis gas. Conversion to FLEXSORB® PS absorbent included draining the original solution, followed by water wash and

TABLE VII

FLEXSORB® PS Absorbent Demonstrates Capacity and Energy Credits in Commercial Syngas Plant

	Conventional Amine-Solvent	FLEXSORB® PS Absorbent
Feed Rate	Base	120% Base
Product		
CO ₂ , vppm (feed = 6.5 mol%)	----- 10 -----	
H ₂ S, vppm (feed = 400 vppm)	----- 2.0 -----	
CO ₂ removal	Base	125% Base
Solution circulation rate	Base	50% Base
Steam Rate	Base	50% Base

charging the FLEXSORB® PS solution. No mechanical modifications were required. Table VII compares the process performance of the FLEXSORB® PS absorbent and the conventional system it replaced. Despite removing 25% more CO₂, the required solvent circulation rate for the FLEXSORB® PS absorbent was 50% of that required with the existing conventional amine-solvent system. Since the tests were conducted at a constant steam ratio, i.e. 1bs of steam per gallon of solution circulation, a 50% energy savings was realized with the FLEXSORB® PS absorbent. At the time of testing, the conventional solvent system had undergone considerable degradation which required higher circulation rates and steam rates relative to fresh solution. Had the conventional solvent been fresh solution, a 30% energy savings would have been expected.

The FLEXSORB® PS solvent has completed over four years of commercial operation in this unit. Overall operability of the solvent has been excellent. Amine degradation, which previously had been a serious problem, quickly reached equilibrium at a low level. Amine losses attributed to volatility or solution losses have been about 5% of the initial amine inventory per year.

FLEXSORB® PS absorbent has also been applied for treating natural gas at Esso Resources Canada Limited's Quirk Creek gas plant. This plant was designed to process 90M SCF/D of gas containing 8.9 vol% H₂S using a commercially proven amine-solvent system. However, operation at the plant had been restricted to approximately 75% of design due to limitations in lean solution cooling capacity. Because of declining production at the fields, the loss in capacity was not a bottleneck. However, the Quirk Creek plant received approval to process additional gas from a nearby field. Processing the additional gas would require the full design capacity.

Mechanical modifications to increase the lean solution cooling capacity by 68% were initially considered to debottleneck the plant. However, subsequent engineering studies indicated that changeout to the FLEXSORB® PS solvent could achieve the necessary plant debottleneck with no mechanical modifications.

During March of 1985 the Quirk Creek plant was converted to FLEXSORB® PS absorbent. Although the complete allocation of production gas was not available at the time of startup, sufficient reductions in both solution circulation rate and reboiler duty were demonstrated in order to ensure satisfactory operation at design capacity. Table VIII compares performance of the FLEXSORB® PS solvent with the conventional system. Because of declining gas supply, the gas rate for the conventional solvent test carried out in 1980 was 30% higher than for the FLEXSORB® PS absorbent test period. As a result, circulation rate and reboiler duties for FLEXSORB® PS absorbent were normalized upward so that comparisons could be made on a constant feed basis. FLEXSORB® PS solvent achieved the desired cleanup to 1/4 grain H₂S and 3 ppm mercaptan at 61% of the circulation rate required for the conventional solvent. Reboiler duty was reduced by 20%. In addition, plant experience with the conventional solvent indicated that rich solution acid gas loading and temperature had to be limited in order to alleviate equipment fouling caused by amine degradation.

TABLE VIII

FLEXSORB® PS Absorbent Application at
Quirk Creek Natural Gas Plant

	Conventional Amine-Solvent	FLEXSORB® PS Absorbent
Inlet Gas Rate, MSCF/SD	70	52
Inlet gas composition, mol pct		
H ₂ S	----- 9-10 -----	
CO ₂	----- 4.1 -----	
Sales Gas Quality		
H ₂ S, vppm	----- 1 -----	
RSH/ vppm	----- 3 -----	
Process Parameters		
Solvent Circulation Rate	Base	61% Base*
Reboiler Duty	Base	80% Base*
Projected Maximum Inlet Gas Rate, MSCF/SD	70	90.0

*Normalized to constant feed rate

No such fouling or sludge formation was experienced with FLEXSORB® PS solution even though rich acid gas loadings and temperatures were substantially higher. Latest operations with the complete allocation of gas indicate that the FLEXSORB® PS solvent has achieved the desired debottleneck (see Table VIII).

While the FLEXSORB® PS solvent has found the initial use in retrofit applications, the benefits of the high capacity solvent can be sometimes best realized in grassroots applications where significant reductions in capital equipment are possible. Table IX compares the use of FLEXSORB® PS absorbent to conventional technology for acid gas cleanup in a large liquefied natural gas plant. FLEXSORB® PS solvent circulation rate was 24% lower than the conventional amine-solvent system. In a grassroots design, this

TABLE IX

FLEXSORB® PS Absorbent Has Significant Credits
in Grassroots Applications

Basis: 60 MSCF/SD. 850 psig natural gas

	<u>Feed Mole %</u>	<u>Treated Gas VPPM</u>	
CO ₂	18.5	50	
H ₂ S	0.1	4	
		<u>Conventional Amine Solvent</u>	<u>FLEXSORB® PS Absorbent</u>
Process			
● Solution GPM	124% Base		Base
● Steam	104% Base		Base
● Power	120% Base		Base
Economics			
● Investment, M\$	+12		Base
● Operating Costs, M\$/Yr	+2.2		Base

lower circulation rate would result in significantly smaller equipment designs. Estimated equipment savings of 12 million dollars were calculated. Energy use including regeneration steam and power for solution circulation were lower, resulting in estimated annual energy savings of 2.2 million dollars.

CONCLUSIONS

Exxon researchers were the first to recognize the dimensions and practical importance of the new area represented by hindered amines. Before we began our research on gas treating, some investigators^(6,7) had observed that hindered amines give unstable carbamates. Other investigators⁽¹⁶⁾ had pointed out the importance of a low carbamate stability (low K_c) in order to obtain high capacity.

The discovery of hindered amines represents an example of how application of first principles and experimental observations

led to new industrial gas treating absorbents. As of today, fourteen commercial units are using hindered-amine-based absorbents. Additional commercializations are in preparation.

At the very beginning of our investigations, we decided to look for a drop-in application, i.e. an application that could be used in existing plants. In addition to lowering energy consumption, hindered amines increase the output of existing plants, i.e. they can debottleneck the plant. In the case of new plants, the higher solution capacity leads to lower solution circulation and lower energy consumption which is reflected in smaller equipment and capital savings.

Use of hindered amines represents new advances in gas treating. Steric hindrance of amines improves acid gas removal by lowering carbamate stability. In addition to saving energy and capital in gas treating significantly, the hindered amines used in practice have much better stability than conventional amines. Hindered amines have low or no amine degradation.

REFERENCES

1. A. L. Kohl and F. C. Riesenfeld, "Gas Purification", 3rd Ed., Gulf Publishing Co., Houston, 1979.
2. R. N. Maddox, "Gas and Liquid Sweetening", Campbell Petroleum Series, Norman, Oklahoma, 1974.
3. G. Astarita, D. W. Savage and A. L. Bisio, "Gas Treating with Chemical Solvents", Wiley, New York, 1983.
4. H. N. Weinberg, B. Eisenberg, F. J. Heinzelmann and D. W. Savage, "New Gas treating Alternatives for Saving Energy in Refining and Natural Gas Production", World Petroleum Congress, London, August-September 1983, Paper RTD 10 (1).
5. W. S. Ho, G. Sartori, F. J. Heinzelmann and D. W. Savage, "Gas Treating with Amine Solvents", presented at the 191st ACS National Meeting and First International Conference on Separations Science and Technology, New York, NY, April 16-18, 1986, Paper No. 272.
6. M. B. Jensen, *Acta Chem. Scand.* 11, 499 (1957).
7. J. L. Frahn, J. A. Mills, *Austral. J. Chem.* 17, 256 (1964).
8. M. T. Melchior, private communication, 1975.
9. G. Sartori, D. W. Savage, *Ind. Eng. Chem. Fundam.* 22, 239 (1983).
10. D. F. DeTar, *J. Org. Chem.*, 45, 5174 (1980).
11. M. M. Sharma, *Trans. Faraday Soc.* 61, 681 (1965).

12. A. M. Goldstein, A. M. Edelman, W. D. Beisner, P. A. Ruziska, Oil & Gas J. 82, July 16, p. 70, (1984).
13. E. C. Brown, G. R. Chludzinski, K. R. Clem, A. M. Goldstein, Petroenergy '84 Symposium, Houston, Aug. 19, 1984.
14. R. G. Auld, J. L. Kaufman, G. Sartori, 35th Canadian Chemical Engineering Conference, Calgary, Alta., Oct. 6-9, 1985, Paper No. 218.
15. S. Wiechert, T. M. Gemborys, G. Sartori, F. Wu, AIChE Spring National Meeting, New Orleans, LA, April 6-10, 1986.
16. A. L. Shrier, P. V. Danckwerts, Ind. Eng. Chem. Fundamentals, 8, 415 (1969).