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STERICALLY-HINDERED AMINES FOR ACID-GAS ABSORPTION 

G. Sa r to r i ,  W. S. Ho, D. Id. Savage, 
Exxon Research and Engineering Company, Corporate Research 

6. R. Chludzinski 
Exxon Research and Engineering Company, Exxon Engi neeri ng , 

S. Wiechert 
Exxon U.S.A., Baton Rouge Ref inery 

Baton Rouge, Louisiana 70821 

Route 22 East, Annandale, New Jersey 08801 

Park Avenue, Florham Park, New Jersey 07932 

ABSTRACT 

This paper reviews s te r ica l l y -h indered amines for removal 
o f  ac id  gases such as COP and H2S from gaseous streams. 
hindrance o f  ami nes reduces carbamate s t a b i l i t y .  Moderately h i  n- 
dered amines are character ized by high rates o f  COP absorpt ion and 

h igh  capac i t ies  f o r  C02. 
organic solvent has considerably higher capaci ty than t h e  

conventional ami ne-solvent system for simultaneous removal o f  C02 
and H2S from synthesis gas and na tura l  gas. A severely-hindered- 

amine absorbent, character ized by a very low r a t e  o f  C02 
absorption, has much higher capaci ty and s e l e c t i v i t y  than t h e  

cur ren t  i ndus t r y  standard, methyldi ethanol ami ne, for  s e l e c t i v e  
removal of H2S from C02-containing streams. Use o f  hindered amines 

represents new advances i n  gas t rea t i ng .  
energy and cap i ta l  i n  gas t r e a t i n g  s i g n i f i c a n t l y .  I n  add i t ion ,  

hindered ami nes used comnerci a l l y  have much b e t t e r  s t a b i l i t y  than 

S t e r i c  

The moderately hindered amine i n  use w i t h  

Hindered amines save 
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172 SARTORI ET AL. 

conventional amines. As of today, fourteen commercial p lan ts  use 

h i  ndered ami nes. 

INTRODUCTION 

Acid-gas removal from gaseous streams (gas sweetening) i s  

a very common process and covers broad processing areas i n  r e f i n -  
ing,  chemical and producing o p e r a t i o n ~ ( l ’ ~ ) .  
Figure 1, the  fuel gases i n  a r e f i n e r y  are genera l l y  a t  low pres- 
sure w i t h  the sum o f  C02 and H2S p a r t i a l  pressures o f  about 70 kPa 
o r  less  (70 kPa i s  about 10 ps i ) .  The gases are high i n  H2S and 
low i n  C02 and have a C02 t o  H2S mole r a t i o  o f  about 0.1, These 
gases are t rea ted  t o  remove H2S i n  order t o  s a t i s f y  environmental 
combustion standards. 

As i l l u s t r a t e d  i n  

The t a i l  gas from a s u l f u r  p lan t  has a C02 t o  H2S r a t i o  

o f  about 10. The t a i l  gas i s  t rea ted  f o r  removing H2S i n  order t o  
increase s u l f u r  recovery and t o  meet envi ronmental regulat ions.  

The low-Joule fue l  gas produced i n  Exxon’s FLEXICOKING r e s i d  con- 
version process has a s i m i l a r  mole r a t i o .  
p r i o r  t o  combustion t o  reduce s u l f u r  d iox ide  emission. 

The gas i s  desu l fu r ized  

I n  a hydrogen plant,  the  steam reformer converts methane 

o r  other hydrocarbon feed t o  hydrogen and C02. C02 i s  the on ly  
ac id  gas, and i t  has a pressure o f  about 350 kPa. This C02 i s  

removed t o  s a t i s f y  H2 p u r i t y  spec i f i ca t ions .  S im i la r  gas t r e a t i n g  
requirements are found i n  ammonia p lan ts  and i n  synthesis gas gen- 

erators.  

Gases associated w i t h  producing operations, such as na- 

t u r a l  gas, and syn the t ic  fuels,  such as coal g a s i f i c a t i o n  and shale 
o i l ,  cover broad ranges o f  both ac id  gas composition and pressure. 

Very o f ten  t h e  gas t r e a t i n g  agents are amines, such as 

monoethanol ami ne (MEA) , diethanol  ami  ne (DEA) , d i  i sopropanol ami ne 
(D IPA)  and N-methyldiethanolamine (MDEA), They are  used i n  aqueous 
so lu t ion ,  i n  aqueous organic medium o r  i n  combination w i th  aqueous 
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STERICALLY-HINDERED AMINES 173 
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FIGURE 1 
Gas t r e a t i n g  covers broad processing areas 

potassium carbonate. Worldwide, there  are hundreds o f  gas 

sweetening un i ts .  

Most gas t r e a t i n g  processes use an in tegra ted  absorber- 
regenerator f lowsheet as shown i n  Figure 2. The impure gas t o  be 
t rea ted  i s  contacted countercur ren t ly  w i t h  the  amine so lu t i on  i n  a 
tower, and the  t rea ted  gas leaves from t h e  top. The r i c h  amine 
so lu t i on  i s  t rans fe r red  t o  the  desorber (regenerator), where a 
temperature increase and a pressure decrease cause t h e  ac id  gases 
t o  be desorbed and evolve from t h e  top  o f  the  tower. 
regenerated amine s o l u t i o n  i s  pumped back t o  t h e  top  o f  t h e  

absorber, 
regenerate it. 

The 

Energy i s  required t o  pump t h e  s o l u t i o n  around and t o  

Hindered am1 nes show considerable advantages over t h e  
conventional alkanolamines 1 i s t e d  above. Moderately hindered 
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mated Gas Acid Gas 

SARTORI ET AL. 

FIGURE 2 
Typical  ac id  gas removal process 

amines lead t o  b e t t e r  capac i ty  f o r  C02 and higher absorpt ion 
rate. Severely hindered amines have b e t t e r  s e l e c t i v i t y  f o r  H2S 

over C02 compared t o  t h e  conventional MDEA. 

Hindered amines represent the  r e s u l t  o f  cooperat ive e f -  

f o r t s  by var ious Exxon a f f i l i a t e s .  
on the  use o f  a severely-hindered amine, won the  IR-100 award i n  

1985 and was one o f  t he  f i v e  f i n a l i s t s  f o r  t h e  1985 Ki rkpa t r i ck  
award. As o f  today, fourteen commercial p lan ts  use hindered 

ami nes. 

The FLEXSORB@ SE solvent, based 

1. D e f i n i t i o n  and Examples 

A hindered amine has a bulky a l k y l  group attached t o  the  
aminogroup. More s p e c l f i c a l l y .  we de f i ne  a hindered amine as be- 
long ing  t o  e i t h e r  of these classes: 

1) a primary amine i n  which t h e  aminogroup i s  at tached t o  
a t e r t i a r y  carbon 
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STERICALLY-HINDERED AMINES 175 

2) a secondary amine i n  which t h e  aminogroup i s  a t tached 

t o  a t  l e a s t  one secondary o r  t e r t i a r y  carbon. 

C 

H2N-C-C-OH 

C 

2-amino-2-methyl-1-propanol 
I 
I 

C “>o C-NH2 

H2 C 
C 
I 

C-C-NH-C-C-OH 

lY8-p-menthanedi ami ne 

2 - i  sopropyl  ami noethanol 

I n  genera l ,  o n l y  a l i p h a t i c  and c y c l o a l i p h a t i c  amines a r e  

s u i t a b l e  f o r  gas t r e a t i n g .  Aromatic amines, due t o  t h e i r  lower  
b a s i c i t y ,  l e a d  t o  low a b s o r p t i o n  c a p a c i t i e s  and ra tes .  
aminogroup, t h e  amine must c o n t a i n  another  f u n c t i o n a l  group t o  
inc rease s o l u b i l i t y  and reduce v o l a t i l i t y ,  e.g. a hydroxy l  o r  c a r -  

boxy l  i c  group. 

Besides t h e  

2. Amine Carbamate S t a b i l i t y  as a Func t ion  o f  S t e r i c  Hindrance 

The low tendency o f  h indered amines t o  form carbamates 
owing t o  t h e  bu lk iness  o f  t h e  s u b s t i t u e n t  a t tached t o  t h e  amino- 

group has been observed by prev ious  i n v e s t i g a t o r s .  I n  1957, 
Jensen(6) s t u d i e d  t h e  s t a b i l i t i e s  o f  t h e  carbamate o f  b u t y l -  

amines. A d d i t i o n  o f  bar ium c h l o r i d e  t o  an amine s o l u t i o n  conta in -  
i n g  carbon d i o x i d e  caused t h e  p r e c i p i t a t i o n  o f  carbonate and b i c a r -  

bonate, whereas carbamate i o n s  remained i n  s o l u t i o n .  A f t e r  
s e p a r a t i o n  o f  t h e  p r e c i p i t a t e ,  h e a t i n g  t h e  s o l u t i o n  t ransformed t h e  

carbamate ions  i n t o  carbonate ions,  w i t h  consequent p r e c i p i t a -  
t i o n .  Using t h a t  technique,  Jensen determined va lues o f  t h e  e q u i l -  

i b r i u m  cons tan t  K, f o r  carbamate h y d r o l y s i s  w r i t t e n  f rom r i g h t  t o  
l e f t ;  t h e y  a r e  g iven i n  Table I .  

R N H ~  t H C O ~  RNHCOO- t H ~ O  

IRNHC00-] 

Kc = [RNH21CHC0~l 
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176 SARTORI ET AL. 

TABLE I 
Carbamate S tab i l  i t y  Equi 1 i b r i  urn Constants a t  18OC (6 )  

Ami ne !L 
CH3-CH2-CH2-CH2-NH2 63 

y 3  
CH3-C-NH2 7 

I 
CH3 

TABLE I 1  
Hindered Amines Unable t o  Form Carbamates 

y 3  

2-ami n 0- 2 -met hy 1 - 1 - p r o  pan o 1 HO-CH2-C-NH2 
1 
CH3 

FH3 

1 
CH3 

2-ami no-2-methyl propi  oni  c ac id  HOOC-C-NH2 

13::; H 
1-amino-1-cyclopentanecarboxyl i c  ac id  

1-arni no-1-cycl ohexanecarboxyl i c  ac id  

2-ami no-2-phenyl p rop ion ic  ac id  

p i  pecol i n i  c ac id  

CH3 Qi-N"2 
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STERICALLY-HINDERED AMINES 

TABLE I 1 1  

177 

Carbamate S t a b i l i t y  Constants f o r  Hindered 
and Conventional Amines by Carbon-13 NMR 

Amino a1 coho1 K, a t  4OoC 

HO-CH2-CH2-NH2 12.5 

HO-CH2-CH2 

“H 
HO-CH2-CH2 / 

y 3  

HO-CH2-C-NH2 
I 
CH3 

2.0 

<0.1 

Table I shows t h a t  t he  carbamate o f  t he  hindered t e r t .  
butylamine i s  much less  s tab le  than t h a t  o f  t he  unhindered n- 

bu ty l  ami ne. 

I n  1964 Frahn and M i l l s ( 7 )  showed t h a t  c e r t a i n  amines d i d  

no t  form any carbamate under t h e i r  experimental condi t ions,  see 
Table 11, and a t t r i b u t e d  t h a t  t o  s t e r i c  hindrance. 

magnetic resonance (Melch io r ( * ) ) .  

d i f f e rences  i n  carbamate s t a b i l i t y  between hindered and conven- 
t i o n a l  amines. The unhindered monoethanolamine and diethanolamine 

show values of Kc o f  12.5 and 2.0, respec t ive ly ,  whereas the  h in -  
dered 2-ami no-2-methyl-1-propanol has a Kc lower than .l. 

Carbamate s t a b i l i t y  can be measured by carbon-13 nuclear 
Table I 1 1  shows s i g n i f i c a n t  

S p a c e - f i l l i n g  molecular models c l e a r l y  show the  dramatic 
d i f f e rences  i n  carbamate s t a b i l i t y  between hindered and conven- 

t i  onal ami nes. 

Figures 3 and 4 show t h a t  r o t a t i o n  around t h e  N-COO- bond 
i s  un res t r i c ted  i n  the  carbamate o f  t he  unhindered n-butylamine, 
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SARTORI ET A L .  

FIGURE 3 
Molecular model o f  carhamate o f  n-butyl  am1 ne 

whereas r o t a t i o n  around the  N-COO' bond i n  t h e  carbamate o f  the  

hindered t e r t .  butylamine i s  on ly  poss ib le  if the bu lky  subs t i t uen t  

i s  compressed. Consequently, the carbamate o f  t e r t .  butylamine i s  
much less  s tab le  than t h a t  o f  n-butylamine. 

3.  CO,-Ami ne React i on  S to i  ch i  omet ry , Vapor-Liquid Equi 1 i b r i  um 

Carbamate s t a b i l i t y  has an important e f f e c t  on the  C02- 

- 

amine reac t i on  stoichiometry.  

so lu t ion ,  two reac t ions  can occur: 

A) 

B) 

When C02 i s  absorbed i n  an amine 

2-NH2 + C02 + R-NH; + R-NH-COO' 
R-NH2 + COP + H20 + R-NH; t HCO; 
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STERICALLY-HINDERED AMINES 179 

FIGURE 4 
Molecular  model o f  carbamate o f  t e r t - b u t y l  ami ne 

Whether r e a c t i o n  A or B occurs depends on t h e  s t a b i l i t y  

o f  t h e  carbamate. I f  t h e  amine i s  n o t  hindered, i.e. i f  R i s  n o t  

bu lky ,  t h e  carbamate w i l l  be s t a b l e  and r e a c t i o n  A w i l l  occur, 
which means a h a l f  mole of C02 absorbed per  mole o f  amine. 
amine i s  hindered, i.e. if R i s  bu lky ,  t h e  carbamate w i l l  be  un- 
s t a b l e  and r e a c t i o n  B w i l l  occur, which means one mole o f  C02 ab- 
sorbed p e r  mole o f  amine. 
i m p o r t a n t  e f f e c t  on t h e  s t a b i l i t y  o f  t h e  carbamate and consequent ly  

on t h e  s t o i c h i o m e t r y  of t h e  r e a c t i o n  w i t h  C02. The f o r m a t i o n  o f  a 
s t a b l e  carbamate i s  t h e  thermodynamic l i m i t a t i o n  t o  t h e  c a p a c i t y  o f  
convent iona l  amines f o r  C02 removal. 

I f  t h e  

We see how t h e  b u l k i n e s s  o f  R has an 
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180 SARTORI ET AL. 

P1 ac i  ng a bu lky  subst i  t uen t  attached t o  t h e  am1 nogroup 
overcomes the  thermodynamic l i m i t a t i o n  and leads t o  the  t h e o r e t i c a l  
capaci ty o f  one mole o f  C02 per mole o f  amine. 

When desorpt ion i s  ca r r i ed  out, 1.e. reac t ions  A and B go 

from r i g h t  t o  l e f t ,  r eac t i on  A w i l l  be incomplete, owing t o  the  
S t a b i l i t y  of t he  carbamate, whereas reac t i on  B w i l l  be complete. 

Therefore, both the  amount o f  COP absorbed and t h e  amount o f  C02 
desorbed are h igher  i n  the  case o f  t h e  hindered than o f  t h e  unhin- 

dered amine. 
higher than t h a t  o f  t h e  unhindered amine. 

Otherwise said, t h e  capaci ty o f  the  hindered amine i s  

Vapor-1 i q u i d  equ i l  i b r i  um (VLE) curves a1 so show t h e  capa- 

c i t y  advantage o f  hindered amines vs. t h e i  r unhindered counter- 
parts.  
C02-ami noal coho1 -water systems empl oy i  ng the  unhindered mono- 
ethanol ami ne (MEA) and the  hindered 2-ami no-2-methyl -1-propanol 
(AMP)('). A t  4OoC t h e  VLE curve f o r  AMP i s  s h i f t e d  t o  substan- 
t i a l l y  h igher loadings ( the  load ing  i s  def ined as moles o f  COP 
absorbed per mole o f  amine) as compared t o  MEA, espec ia l l y  a t  h igh  
C02 p a r t i a l  pressures, i n  agreement w i t h  the  previous considera- 
t i o n s  about the  reac t ion  stoichiometry.  A t  12OoC, a temperature 
c lose t o  t h a t  o f  regeneration, the  VLE curve f o r  AMP i s  d isplaced 
t o  lower loadings as compared t o  MEA, a l so  i n  agreement w i t h  t h e  
previous considerat ions about the  reac t i on  stoichiometry.  Based on 
carbamate s t a b i l i t y ,  hindered amines can be d i v ided  i n t o  moderately 
and severely hindered. Moderately hindered amines form unstable 
carbamates t h a t  are r e a d i l y  hydrolyzed; severely hindered amines do 
no t  form any carbamate. 

t i v e l y  by means o f  T a f t ' s  s t e r i c  hindrance parameter CES(lo). 
Unhindered amines have CEs < 1.32. 
I E s  comprised between 1.32 and 2.0. 

CES > 2.0. 

F igure  5 shows vapor - l iqu id  equ i l i b r i um (VLE) curves f o r  

The degree o f  s t e r i c  hindrance can be expressed quan t i t a -  

Moderately hindered amines have 
Severely hindered amines have 
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i" I 
O 1  

/ 

I 

c, 
I 
I 

d 

I 

I 
I 

I 
I 
I 

03M M U  

v1M A M P  

(WHINDERED) 

(HINDERED) 

1 I I I 
.2 .4 .6 .I 1 ,  
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FIGURE 5 

Measured P vs. load ing  curves f o r  aqueous MEA and AMP 
CO2 

4. E f f e c t  of S t e r i c  Hindrance on CO,-Amine - Reaction Rate 

I n  1965, M. M. Sharma(") publ ished values o f  second- 
order r a t e  constants kAM-C.0 f o r  t he  reac t ion  o f  C02 w i t h  a l a r g e  

number o f  amines. 
log10kAM-co2 vs. pKa, some i n t e r e s t i n g  c o r r e l a t i o n s  are observed, 

Figures 6, 7, 8 and 9. 

2 
Div id ing  the  amines i n t o  classes and p l o t t i n g  

I n  t h e  case o f  primary amines (Figure 6) a t  
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4.3 

SARTORI ET AL. 

I I 

0 MNI$ 

FIGURE 6 

E f f e c t  o f  h ind rance  on COP r a t e  cons tan t  f o r  p r imary  amines 

5 

0" 

f 
f 4  

Y 

D 

3 

I 1 l 
a M. NH 

a i bI NH 

a i h2NH 

FIGURE 7 
E f f e c t  o f  h ind rance  on C02 r a t e  cons tan t  f o r  secondary arnines 
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I '  I I 8 I 

FIGURE 8 
E f f e c t  o f  i n c r e a s i n g  s t e r i c  h indrance on CO2 r a t e  cons tan t  

f o r  a l k y l  amines 

cons tan t  pKa, t h e  r a t e  cons tan t  decreases i f  s t e r i c  h indrance i n -  

creases. The same happens wi th  secondary amines, F i g u r e  7. I n  
go ing f rom a pr imary  t o  t h e  corresponding secondary amine, F i g u r e  
8, t h e  r a t e  cons tan t  inc reases  o n l y  w i t h  a non-bulky s u b s t i t u e n t ,  
e.g. w i th  t h e  methylamines; i n  t h e  case o f  b u l k y  s u b s t i t u e n t s ,  e.g. 

w i t h  t h e  isopropylamines,  t h e  r a t e  cons tan t  decreases i n  go ing  f rom 
t h e  pr imary t o  t h e  secondary amine. 

We can observe t h a t  d i i s o b u t y l a m i n e  has a lower  r a t e  
cons tan t  than isobuty lamine,  i.e., go ing  f rom t h e  pr imary  t o  t h e  

secondary amine imp1 i e s  a cons iderab le  s t e r i c  h indrance increase.  
T h i s  means t h a t  branching a t  t h e  6 carbon has l i t t l e  e f f e c t  on t h e  
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I I I 

ORNt12 r- .R2NH 

Me YH 2 '  

I I I 
10 10.5 I !  

pya 

FIGURE 9 
COP r a t e  cons tan ts  f o r  aqueous amino a l c o h o l  r e a c t i o n s  

r a t e  cons tan t  i n  t h e  case o f  t h e  p r i m a r y  amine, b u t  a s i g n i f i c a n t  
e f f e c t  i n  t h e  case o f  t h e  secondary amine. 

Looking a t  t h e  aminoalcohols, F i g u r e  9, we see t h a t  g o i n g  
f rom a p r imary  amin6 i n  t h i s  case monoethanolamine, t o  i t s  sec- 
ondary d e r i v a t i v e s ,  i n  t h i s  case 2-methylaminoethanol and 2 - e t h y l -  
aminoethanol, t h e  r a t e  cons tan t  increases,  e s p e c i a l l y  i n  t h e  case 
o f  t h e  s m a l l e r  s u b s t i t u e n t ,  1.e. t h e  methyl.  A l though t h e  r a t e  

cons tan t  f o r  monoisopropanolamine i s  n e a r l y  t h e  same as t h a t  f o r  
monoethanolami ne, t h e  r a t e  cons tan t  f o r  d i  i sopropanol ami ne i s  de- 
f i n i t e l y  l ower  than  t h a t  o f  diethanolamine. 
s i m i l a r  t o  t h a t  proposed f o r  t h e  isobuty lamines.  The i sop ropano l  

group i s  mi ld ly  bulky,  t h e r e f o r e  i t  does n o t  decrease t h e  r a t e  

The e x p l a n a t i o n  i s  
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STERICALLY-HINDERED AMINES 185 

TABLE I V  
Amine S te r i c  Hindrance Reduces CO, Reaction Rate - 

C02 Reaction Rate Constant a t  4OoC 
Ami  nes - (Liter/Mole/Sec) 

0 Unhindered amines - dimethyl ami ne - d i  propyl  ami ne 

- d i  i sopropyl ami ne 

7.9 x 10; 

7.9 x 10; 

7.1 x 10 

0 Severely hindered amines -1.3 x 10 

0 Moderately hindered amines 

constant appreciably i n  the  case o f  t he  primary amine, but i t  does 
decrease i t  s u b s t a n t i a l l y  i n  t h e  case o f  t h e  secondary amine. 

We have determined t h e  r a t e  constants f o r  the  reac t i on  o f  
C02 w i t h  some t y p i c a l  secondary amines, Table I V .  We see t h a t  t h e  
increase i n  s t e r i c  hindrance accompanying t h e  t r a n s i t i o n  from d i -  
methylamine t o  dipropylamine i s  enough t o  reduce t h e  r a t e  constant 
by an order o f  magnitude. The r a t e  constant decreases by near ly  

another order o f  magnitude i n  going from dipropylamine t o  d i i s o -  

propyl  ami ne. F ina l  ly, the  r a t e  constant decreases by more than 
another order o f  magnitude i n  going from di isopropylamine t o  a 

severely hindered ami ne. 

As mentioned before, an unhindered amine reacts w i t h  C02 
according t o  reac t i on  A: 

A) 2 R-NH2 t Cop + R-NH3 t R-NH-COO' 

Th is  means t h a t  two moles o f  amine are  t i e d  up f o r  every mole o f  
C02 absorbed. 

t o  reac t i on  B: 

Th is  means one mole o f  amine t i e d  up per mole o f  C02 absorbed. 

a consequence, a t  a c e r t a i n  C02/amine r a t i o  the  f r a c t i o n  o f  amine 

t i e d  up w i l l  be lower, o r  i n  other words, t h e  f r a c t i o n  o f  f r e e  
amine w i l l  be higher, i f  the  amine i s  hindered. Therefore, i f  we 

l o o k  a t  the  expression f o r  t h e  C02-amine reac t i on  ra te :  

On the  other hand, a hindered amine reacts according 

B) R-NH2 t C02 t H20 + R-NH; t HCO; 
As 

V = ~ A M - C O ~  Ch ine lCco21 
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186 SARTORI ET AL. 

we know t h a t  an increase i n  s t e r i c  hindrance w i l l  cause a decrease 
i n  kAM-CO2, but f o r  a moderate degree o f  hindrance t h a t  w i l l  be 
compensated by an increase i n  f ree-ami ne concentrat ion. 
severely hindered amine has a very low r a t e  constant and conse- 
quent ly a very low COP absorpt ion rate.  

However, a 

5. Areas of Use o f  Hindered Amines, Processes 

Un l ike  COP, H2S reac ts  w i t h  an amine a t  a r a t e  unaffected 
by s t e r i c  hindrance. 
protonat ion:  
no t  a f fec ted  by the  bulk iness o f  the  subst i tuents.  

quence, moderately hindered amines, character ized w i t h  high ra tes  
of CG2 absorpt ion and h igh  capac i t ies  f o r  C02, are s u i t a b l e  f o r  t h e  

removal of C02 and the  bulk,  non-select ive removal of COP and 
H2S. 
o f  C02 absorption, are s u i t a b l e  f o r  t h e  k i n e t i c a l l y  se lec t i ve  re -  

moval o f  H2S i n  the  presence o f  COP (F igure  10). 

The reason i s  t h a t  t he  reac t ion  i s  a simple 
the  r a t e  o f  add i t i on  o f  a proton t o  an aminogroup i s  

As a conse- 

Severely hindered amines, character ized w i t h  a very low r a t e  

Moderately hindered amines can be used i n  aqueous solu- 
t i o n ,  i n  aqueous-organic medium and i n  combination w i t h  aqueous 
potassium carbonate. Severely hindered amines are genera l l y  used 
i n  aqueous so lu t ion ,  bu t  sometimes they can be used i n  aqueous- 
organic medium. 

6. Hindered-Amine-Based Processes 

Two hindered-amine-based gas t r e a t i n g  solvents are i n  
commercial use: 
FLEXSORBQ SE, based on an aqueous severely-hi  ndered am1 ne, se l  ec- 

FLEXSORB@ PS, based on a moderately-hindered amine i n  aqueous- 
t i v e l y  removes H2S i n  the  presence o f  COP. 

organic medium, removes COP and H2S i n  a non-select ive way. 

7. FLEXSORB@ SE 

Sel ec t  i ve H2S removal i s  becomi ng i ncreasi ng ly  important, 
s ince the re  w i l l  be more gases w i t h  low H2S/C02 ra t i os ,  such as 
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- inn. I I 1 

I I 

u x 8 2 1  50 

.F = I  a 

Bulk COrlH2S 
Removal Removal 

I I 

I I I 

Moderate Severe 
Ly 0 '  

LOW 

Degree of Hindrance - 
FIGURE 10 

S t e r i c  hindrance e x p l o i t a b l e  f o r  both C02 removal and s e l e c t i v e  
H2S removal 

s u l f u r  p lan t  t a i l  gases, c e r t a i n  na tura l  gases, gases produced i n  

Exxon's FLEXICOKING process and i n  coal gas i f i ca t i on .  
sary t o  concentrate H2S from these streams before feeding t o  a 

Claus p lan t .  

commercial use f o r  the  s e l e c t i v e  removal o f  H2S i n  the  presence o f  
C02. 
means of Vt5 and an anthraquinone de r i va t i ve ,  i.e. it i s  
thermodynamically se lec t i ve ,  The aqueous methyldiethanolamine 
(MDEA) process takes advantage o f  the  d i f f e rence  i n  absorpt ion 

ra tes  between H2S and COP, i.e. i t  i s  k i n e t i c a l l y  se lec t i ve .  

o f  a s e l e c t i v e  amine t r e a t i n g  agent, ra the r  than a non-select ive 

agent such as monoethanolamine o r  diethanolamine, r e s u l t s  i n  lower 

It i s  neces- 

Well known processes, S t r e t f o r d  and MDEA, are i n  

The S t r e t f o r d  process i s  based on the  ox ida t i on  o f  H2S by 

Use 
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1 I 1 

Severely Hindered Amine 

& 

I I 1 

Relative HaS Loading 

FIGURE 11 
Severely hindered ami ne outperforms MDEA f o r  se lec t i ve  H2S removal 

amine c i r c u l a t i o n  rate,  smal ler  equipment and lower operat ing 
costs. 
t he re fo re  i s  not t i e d  up i n  unnecessary COP removal. 

This occurs because t h e  amine p r e f e r e n t i a l l y  absorbs H 2 S ,  

Both t h e  S t r e t f o r d  and MDEA processes have some l i m i t a -  
t ions .  The S t r e t f o r d  process produces low-qua l i t y  s u l f u r ,  and s ide  
react ions lead t o  format ion o f  th iocyanides and t h i o s u l f a t e s  which 
are  d i f f i c u l t  t o  dispose of. 
thyldiethanolamine process i s  t h a t  i t  has a good s e l e c t i v i t y  on l y  
a t  low loadings, i.e. s e l e c t i v i t y  decreases r a p i d l y  as H2S and C02 
are  absorbed. We have shown before  t h a t  severely-hindered amines 
are  character ized by a very low r a t e  o f  reac t ion  w i t h  C02 and a 
very high r a t e  of reac t i on  w i t h  H2S, t he re fo re  they a re  s u i t a b l e  

f o r  t he  k i n e t i c a l l y  se lec t i ve  removal o f  H2S i n  t he  presence o f  
COP. Exxon’s FLEXSORBQ SE amine, besides showing good H2S selec- 

A drawback o f  t he  aqueous me- 
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I I I 1 1 I - 
Feed Gas 
CO*-10% 
H&-l% 

4000 - 

2000 - - 

- 1000 ,"," - - kSM:kz:demd a - 
- - 

- 

- 
I 1 1 I 

.6 .8 1 .o 1.2 1.4 1.6 1.8 

40% Capacity- 
Advantage 

200 

HIS In 
Treated Gas 

(PPW 

2.0 
Relative Solution Circulation Rate 

FIGURE 12 
Severely hindered amine commercial data show 

s i g n i f i c a n t  capaci ty advantage 

t i v i t y  and high capaci ty,  has h igh  s o l u b i l i t y ,  low v o l a t i l i t y ,  
exce l l en t  chemical s t a b i l i t y ,  no c o r r o s i v i t y  and low foaminess. 
F igure  11 shows t h a t  t h e  severely-hindered FLEXSORB@ SE outperforms 

MDEA as regards s e l e c t i v i t y  a t  h igh  loading. S e l e c t i v i t y  i s  de- 
f i n e d  as: 

H2S/C02 r a t i o  i n  s o l u t i o n  
vi ty = H2S/C02 r a t i o  i n  gas phase 

The advantage of FLEXSORB@ SE over MDEA has been 

confirmed i n  commercial F igure  12 shows the  
resu l ts .  A l l  data are  a t  constant r a t i o  o f  regenerat ion steam r a t e  

t o  amine s o l u t i o n  c i r c u l a t i o n  r a t e  (Kg steam/m o f  amine 
so lu t i on ) .  

a t  t h e  design p o i n t  of 300 ppm of H2S i n  t h e  t rea ted  gas. 

3 

FLEXSORB@ SE shows a 40% capac i ty  advantage over MDEA 

Since 
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TABLE V 

FLEXSORB@ SE i s  Economical ly  A t t r a c t i v e  

Bas is  
0 D e s u l f u r i z a t i o n  of 7.9M mi /d  (280 MSCF/D) low j o u l e  gas 
0 D e s u l f u r i z a t i o n  o f  1.OM m /d(35 MSCF/D) Claus t a i l  gas 
0 T o t a l  s u l f u r  removed, 0.125 Gg/d(123 T/D) 

0 Amine c i r c .  r a t e  4 1% 
FLEXSORBQ SE, % of MDEA 

0 Steam r a t e  
0 Regenerator 

- Diameter 
- He igh t  

0 Investment 
0 Operat ing Cost 

5 1% 

69% 
87% 
7 4% 
57% 

a l l  data a re  a t  a cons tan t  r a t i o  o f  regenera t ion  steam t o  amine 

s o l u t i o n  volume, t h i s  40% c a p a c i t y  advantage t r a n s l a t e s  i n t o  a 40% 
energy saving. 

r e s u l t s  i n  s i g n i f i c a n t l y  smal le r  equipment and lower  investment. 
An example i s  g iven i n  Table V. 

I n  a g rass- roo ts  des ign t h i s  40% c a p a c i t y  advantage 

Some p l a n t s  use d i isopropanolamine (DIPA) r a t h e r  than 
MDEA f o r  t h e  s e l e c t i v e  removal o f  H2S. Table V I  shows a r e t r o f i t  

a p p l i c a t i o n  i n  which FLEXSORB" SE i s  used t o  rep lace  D I P A  i n  a 
smal l  t a i l  gas cleanup u n i t .  The o b j e c t i v e  i s  t o  achieve energy 

savings. FLEXSORB@ SE r e q u i r e s  o n l y  32% o f  t h e  D I P A  c i r c u l a t i o n  
r a t e  and o n l y  25% o f  t h e  D I P A  r e b o i l e r  duty. 

8. FLEXSORB" PS 

FLEXSORB@ PS c o n s i s t s  o f  a moderate ly  h indered amine i n  
an organ ic  s o l v e n t  p l u s  water. 
i n g r e d i e n t s  depend on t h e  a c i d  gases t o  be removed and t h e  degree 
o f  p u r i f i c a t i o n  des i red.  

amines wi th  which i t  competes, FLEXSORB@ PS i s  cons iderab ly  more 
s t a b l e  under t h e  o p e r a t i n g  c o n d i t i o n s .  

The p r o p o r t i o n s  o f  t h e  t h r e e  

Compared t o  t h e  convent iona l  non-hindered 

I n  o rder  t o  c o n f i r m  t h e  
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STERICALLY-HINDERED AMINES 191 

TABLE V I  
FLEXSORB@ SE Incent ives  Versus DIPA Are Very Large 

Basis: 
0 Desu l fu r iza t ion  o f  3.2 MSCF/D Claus T a i l  Gas t o  500 vppm H2S 
0 Feed Condit ions: 16.2 psia, 120°F 

Component Mole % 
76.9 
10.2 
9.8 
1.6 
1.5 

100.0 

FLEXSORB" SE, % o f  D I P A  
So lu t ion  C i r c u l a t i o n  Rate 32% 
Regenerator Reboi l e r  Duty 25% 

labo ra to ry  resu l t s ,  a severe degradation t e s t  was c a r r i e d  ou t  i n  
p a r a l l e l  w i t h  a conventional amine-solvent system(13,14,15). I n  

t h e  t e s t ,  each s o l u t i o n  was al lowed t o  e q u i l i b r a t e  a t  255OF w i t h  a 
na tura l  gas s l ips t ream conta in ing  82 ps ia  of H2S and 37.4 ps ia  o f  

C02. A f t e r  on ly  15 days of exposure, F igure  13, about 90% of the  
i n i t i a l  amine contained i n  the  conventional amine-solvent system 

had undergone degradation. 
FLEXSORB@ PS amine showed on ly  s l i g h t  degradation. 

During t h a t  same per iod  o f  t ime the  

Development o f  FLEXSORB" PS absorbent invo lved ex tens ive  
p i l o t  u n i t  t es t i ng .  Test work was c a r r i e d  ou t  t o  v e r i f y  and quan- 

t i f y  the  capaci ty and mass t r a n s f e r  advantages observed i n  the  
l abo ra to ry  f o r  hindered amines and t o  conf i rm o p e r a b i l i t y  regarding 

foaming, corrosion, and amine degradation. 
s i m i l a r  cond i t ions  were c a r r i e d  out between FLEXSORB@ PS and a 

conventional amine-solvent system. 

Comparative t e s t s  a t  

The p i l o t  p l a n t  used contained the  basic par ts  o f  a con- 

vent iona l  gas t r e a t i n g  p lan t :  absorber, regenerator, r e b o i l e r  and 
lean s o l u t i o n  pump. A feed gas sa tu ra to r  and overhead condensers/ 

knockouts were used t o  ma in ta in  s o l u t i o n  water balance. A gas 
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Aallm 

FLEXSORI 
PS 

Amlw 

10 

FIGURE 13 
S t a b i l i t y  demonstrated under severe f i e l d  cond i t ions  

man i fo ld  al lowed mixing H2S, C02 and N2 over a wide range o f  con- 

cent ra t ions ,  
nents. 
equipped w i t h  in te rmed ia te  l i q u i d  i n l e t s  which al lowed vary ing  t h e  
packing height. On-l ine gas analyses by gas chromatography and 
data logg ing  provided data f o r  ma te r ia l  balance and performance 

ca lcu la t ions .  

N2 was used t o  s imulate the  "non-acid gas" compo- 

Both the  absorber and regenerator were packed columns 

The capaci ty advantages discussed e a r l i e r  were dernon- 

s t ra ted  i n  the  p i l o t  u n i t  by operat ing a t  the  r i c h  end pinch. 
minimum so lu t i on  r a t e  can be determined by ho ld ing  t h e  feed gas 
r a t e  constant and decreasing t h e  s o l u t i o n  r a t e  u n t i l  t he  ac id  gas 
concentrat ion i n  the  absorber t rea ted  gas r i s e s  dramat ica l l y .  A t  

t h i s  pinched cond i t ion ,  t he  s o l u t i o n  has the  maximum ac id  gas load- 
i n g  and the  mass t r a n s f e r  d r i v i n g  fo rce  a t  t h e  absorber bottom 
approaches zero. Regeneration steam dur ing  these t e s t s  would be a t  
a l e v e l  t o  provide adequate regeneration. Rich end capaci ty t e s t s  
were completed f o r  FLEXSORBQ PS and a conventional ami ne-sol vent 
system. So lu t ion  compositions were chosen t o  g ive  equ iva len t  amine 

The 
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1 I 1 -  

Conronllonrl - 100,Ooo - I 

iopoo - 

FLEXSORB PS 

1,000 - 

100 - 
F a ~ d  08s:  14Yo CO, 

2OrC H,S 
Prarrurc 200 pslr 

1 2 3 4 
Rolrtlre Mution RmIe 

I L I I 

F I G U R E  14 
Capacity advantage fo r  FLEXSORB@ PS absorbent 

no rma l i t i es  and physical  so lvent  concentrat ions. I n  both cases 

feed gas compositions and process cond i t ions  were s im i la r .  
shown i n  F igure  1 4  a t  a C02 leak o f  100 vppm, the  FLEXSORB" PS s o l -  
vent operated a t  t he  same steam r a t e  i n  terms o f  l bs  o f  steam per 

ga l l on  o f  s o l u t i o n  c i r c u l a t i o n ;  t he  lower c i r c u l a t i o n  r a t e  
t rans la tes  i n t o  a d i r e c t  steam savings. 

As 

Mass t r a n s f e r  data were obtained by operat ing w i t h  a 

shor t  absorber thereby avoiding equ i l i b r i um pinches a t  e i t h e r  end 
o f  t h e  absorber. As a r e s u l t  l a r g e  d r i v i n g  fo rces  e x i s t  across t h e  

absprber so t h a t  accurate mass t r a n s f e r  c o e f f i c i e n t s  can be de ter -  
mined. Overa l l  mass t r a n s f e r  c o e f f i c i e n t s  were determined based on 
log  mean d r i v i n g  forces and gas phase p a r t i a l  pressures. F igure  15 

compares mass t r a n s f e r  c o e f f i c i e n t s  f o r  C02 absorp t ion  f o r  t h e  
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INCREASING Cop L I Q U I D  LOADING- 

FIGURE 15 
Increased C02 mass t r a n s f e r  r a t e  o f  FLEXSORB@ PS absorbent vs. 

convent ional  amine-solvent system 

FLEXSORB@ PS absorbent and a convent iona l  ami ne-sol vent  system. 

The mass t r a n s f e r  c o e f f i c i e n t  f o r  FLEXSORB' PS e x h i b i t e d  a s t r o n g  
dependence on average l o a d i n g  i n d i c a t i n g  t h e  e f f e c t  o f  t h e  f r e e  
amine c o n c e n t r a t i o n  on mass t r a n s f e r .  

mass t r a n s f e r  r a t e  f o r  FLEXSORB' PS was a f a c t o r  o f  2 t o  3 h i g h e r  
than t h a t  observed f o r  a convent iona l  amine-solvent system. 

I n  genera l ,  t h e  observed COP 

The f i r s t  commercial use o f  FLEXSORB' PS absorbent was a t  

Exxon Chemical Americas' p l a n t  i n  Baton Rouge, Louis iana.  
FLEXSORB' PS absorbent rep laced a convent iona l  amine s o l v e n t  system 

i n  o r d e r  t o  achieve energy savings, i n c r e a s e  c a p a c i t y  and a v o i d  
s o l u t i o n  rec la iming .  

o x i d a t i o n  syn thes is  gas. 
i n c l u d e d  d r a i n i n g  t h e  o r i g i n a l  s o l u t i o n ,  f o l l o w e d  by water  wash and 

The p l a n t  removes H2S and C02 from a p a r t i a l  

Conversion t o  FLEXSORB' PS absorbent 
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STERICALLY-HINDERED AMINES 195 

TABLE V I I  

FLEXSORBQ PS Absorbent Demonstrates Capacity and Energy 
Cred i ts  i n  Commercial Syngas P1 an t  

Conventional FLEXSORBQ PS 
Ami ne-Sol vent Absorbent 

Feed Rate Base 120% Base 

Product 
CO , vppm (feed = 6.5 mol%) ---------- 10 ----------- 
H2S, vppm ( feed = 400 vppm) ---------- 2.0 ---------- 

CO removal Base 125% Base 
SoPution c i r c u l a t i o n  r a t e  Base 50% Base 
Steam Rate Base 50% Base 

charging t h e  FLEXSORBQ PS so lu t ion .  
were required. 
FLEXSORBQ PS absorbent and the  conventional system i t  replaced. 
Despi te removing 25% more COP, t h e  requi  red so l  vent c i  r cu l  a t 1  on 

r a t e  f o r  t he  FLEXSORBQ PS absorbent was 50% o f  t h a t  requ i red  w i t h  
t h e  e x i s t i n g  conventional amine-solvent system. Since the  t e s t s  
were conducted a t  a constant steam r a t i o ,  i.e. l b s  o f  steam per 
ga l l on  o f  s o l u t i o n  c i r c u l a t i o n ,  a 50% energy savings was rea l i zed  

w i t h  the  FLEXSORRQ PS absorbent. 
conventional solvent system had undergone considerable degradation 

which requ i red  higher c i r c u l a t i o n  ra tes  and steam ra tes  r e l a t i v e  t o  
f resh solut ion.  Had t h e  conventional so lvent  been f resh  so lu t ion ,  

a 30% energy savings would have been expected. 

No mechanical mod i f i ca t i ons  
Table V I I  compares the  process performance o f  t he  

A t  t h e  t ime o f  t es t i ng ,  t h e  

The FLEXSORB@ PS solvent has completed over fou r  years of 

commercial operat ion i n  t h i s  u n i t .  Overal l  o p e r a b i l i t y  o f  t h e  
so lvent  has been exce l len t .  Amine degradation, which prev ious ly  

had been a ser ious  problem, q u i c k l y  reached e q u i l i b r i u m  a t  a low 
1 eve1 . hi ne 1 osses a t t r i b u t e d  t o  vo l  a t i  1 i t y  o r  s o l u t i o n  1 osses 
have been about 5% o f  t h e  i n i t i a l  amine inventory  per  year. 
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FLEXSORB@ PS absorbent has a lso  been app l ied  f o r  t r e a t i n g  
na tura l  gas a t  Esso Resources Canada L imi ted 's  Q u i r k  Creek gas 
plant.  This p l a n t  was designed t o  process 90M SCF/D o f  gas con- 
t a i n i n g  8.9 vo l% H2S using a commercially proven amine-solvent 
system. However, operat ion a t  t he  p l a n t  had been r e s t r i c t e d  t o  
approximately 75% o f  design due t o  l i m i t a t i o n s  i n  lean s o l u t i o n  

coo l i ng  capacity. 
t h e  l oss  i n  capaci ty was no t  a bott leneck. However, t h e  Qu i r k  
Creek p l a n t  received approval t o  process add i t i ona l  gas from a 
nearby f i e l d .  Processing t h e  add i t i ona l  gas would requ i re  the  f u l l  
design capacity. 

Because o f  d e c l i n i n g  product ion a t  t he  f i e l d s ,  

Mechanical mod i f i ca t ions  t o  increase the  lean s o l u t i o n  

coo l i ng  capaci ty by 68% were i n i t i a l l y  considered t o  debott leneck 
t h e  plant.  
changeout t o  t h e  FLEXSORB@ PS so lvent  could achieve the  necessary 
p lan t  debott leneck w i t h  no mechanical mod i f i ca t ions .  

However, subsequent engineering s tud ies  i nd i ca ted  t h a t  

Dur ing March o f  1985 the  Q u i r k  Creek p l a n t  was converted 

t o  FLEXSORB@ PS absorbent. Although the  complete a l l o c a t i o n  o f  
product ion gas was no t  ava i l ab le  a t  the  t ime o f  s ta r tup ,  s u f f i c i e n t  

reduct ions i n  both s o l u t i o n  c i r c u l a t i o n  r a t e  and r e b o i l e r  duty were 
demonstrated i n  order t o  ensure s a t i s f a c t o r y  operat ion a t  design 

capaci ty.  Table V I I I  compares performance o f  t he  FLEXSORB@ PS 
so l  vent w i t h  the  conventional system. Because o f  decl  i n i  ng gas 
supply, t he  gas r a t e  fo r  t h e  conventional solvent t e s t  c a r r i e d  ou t  
i n  1980 was 30% h igher  than f o r  t he  FLEXSORB@ PS absorbent t e s t  
period. As a resu l t ,  c i r c u l a t i o n  r a t e  and r e b o i l e r  du t ies  f o r  
FLEXSORBQ PS absorbent were normalized upward so t h a t  comparisons 
could be made on a constant feed basis. FLEXSORB@ PS solvent 
achieved the  desired cleanup t o  1/4 g ra in  H2S and 3 ppm mercaptan 
a t  61% of the  c i r c u l a t l o n  r a t e  required f o r  the  conventional 
solvent. Reboi ler  duty was reduced by 20%. I n  add i t ion ,  p l a n t  
experience w i t h  the  conventional solvent ind ica ted  t h a t  r i c h  
s o l u t i o n  ac id  gas load ing  and temperature had t o  be l i m i t e d  i n  

order t o  a l l e v i a t e  equipment f o u l i n g  caused by amine degradation. 
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TABLE V I I I  

197 

FLEXSORB@ PS Absorbent App l ica t ion  a t  
Qu i r k  Creek Natural  Gas P lan t  

Conventional FLEXSORB@ PS 
Ami ne-Sol vent Absorbent 

I n l e t  Gas Rate, MSCFISD 70 52 

I n l e t  gas composition, mol pct  ---------- 9-10 ----------- ----------- 4.1 ----------- 
Sales Gas Q u a l i t y  

H s, VPPm RSH/ VPpm 

Process Parameters 
Sol vent C i  r cu l  a t i  on Rate Base 61% Base* 
Reboi 1 e r  Duty Base 80% Base* 

Rate, MSCFISD 
Projected Maximum I n l e t  Gas 70 90.0 

-~ 

*Normalized t o  constant feed r a t e  

No such f o u l i n g  o r  sludge format ion was experienced w i t h  FLEXSORB" 

PS s o l u t i o n  even though r i c h  ac id  gas loadings and temperatures 
were subs tan t i  a l l y  higher. La tes t  operat ions w i t h  the  complete 

a l l o c a t i o n  o f  gas i n d i c a t e  t h a t  the  FLEXSORBQ PS so lvent  has 
achieved the  des i red  debott leneck (see Table VIII). 

While t h e  FLEXSORB@ PS so lvent  has found the  i n i t i a l  use 
i n  r e t r o f i t  app l i ca t ions ,  t he  bene f i t s  o f  t h e  h igh  capac i ty  so lvent  

can be sometimes bes t  rea l i zed  i n  grassroots app l i ca t i ons  where 
s i g n i f i c a n t  reduct ions i n  c a p i t a l  equipment are possible. Table I X  

compares the use o f  FLEXSORB@ PS absorbent t o  conventional techno- 
logy  f o r  ac id  gas cleanup i n  a l a r g e  l i q u e f i e d  na tu ra l  gas p lan t .  

FLEXSORBQ PS so lvent  c i r c u l a t i o n  r a t e  was 24% lower than the  
conventional amine-solvent system. I n  a grassroot design, t h i s  
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TABLE I X  

FLEXSORBQ PS Absorbent Has S i  gni  f i  cant Cred i ts  
i n  Grassroots Appl i  ca t ions  

Basis: 60 MSCFISD. 850 p s i g  na tura l  gas 

Mole % VPPM 
Feed Treated Gas 

Process 
So lu t i on  GPM 
Steam 
Power 

18.5 
0.1 

50 
4 

Conventional FLEXSORBQ PS 
Ami  ne Sol vent Absorbent 

124% Base Base 
104% Base Base 
120% Base Base 

Economics 
Investment, M$ t12  
Operating Costs, M f I Y r  t2.2 

Base 
Base 

lower c i r c u l a t i o n  r a t e  would r e s u l t  i n  s i g n i f i c a n t l y  smal ler  
equipment designs. 
d o l l a r s  were calculated. 
and power f o r  s o l u t i o n  c i r c u l a t i o n  were lower, r e s u l t i n g  i n  

est imated annual energy savings o f  2.2 m i l l i o n  do l l a rs .  

Estimated equipment savings o f  12 m i l l i o n  
Energy use inc lud ing  regeneration steam 

CONCLUSIONS 

Exxon researchers were the  f i r s t  t o  recognize the  
dimensions and p r a c t i c a l  importance o f  t he  new area represented by 

hindered amines. 
some inves t i ga to rs (6s7 )  had observed t h a t  hindered arnines g i ve  
unstable carbamates. 
importance o f  a low carbamate s t a b i l i t y  ( low Kc)  i n  order t o  ob ta in  
h igh  capacity. 

Before we began our research on gas t rea t i ng ,  

Other i nves t i ga to rs (16 )  had pointed ou t  the  

The discovery o f  hindered amines represents an example o f  
how app l i ca t i on  o f  f i r s t  p r i n c i p l e s  and experimental observations 
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STERICALLY-HINDERED AMINES 199 

l e d  t o  new i n d u s t r i a l  gas t r e a t i n g  absorbents. As o f  today, four -  

teen commercial u n i t s  a re  using hindered-amine-based absorbents. 
Add i t iona l  c m e r c i a l i z a t i o n s  are i n  preparation. 

A t  t he  very beginning of our i nves t i ga t i ons ,  we decided 
t o  look f o r  a d rop- in  app l i ca t ion ,  i.e. an app l i ca t i on  t h a t  could 
be used i n  e x i s t i n g  p ants. 
consumption, hindered amines increase the  output o f  e x i s t i n g  

p lan ts ,  i.e. they can debott leneck the  plant.  
p lants,  t he  higher s o l u t i o n  capac i ty  leads t o  lower s o l u t i o n  

c i r c u l a t i o n  and lower energy consumption which i s  r e f l e c t e d  i n  
smal ler  equipment and c a p i t a l  savings. 

I n  a d d i t i o n  t o  lowering energy 

I n  t h e  case o f  new 

Use o f  hindered amines represents new advances i n  gas 

I n  a d d i t i o n  t o  saving energy and 

t rea t i ng .  S t e r i c  hindrance o f  amines improves ac id  gas removal by 

lower ing  carbamate s t a b i l i t y .  
c a p i t a l  i n  gas t r e a t i n g  s i g n i f i c a n t l y ,  t he  hindered amines used i n  

p r a c t i c e  have much b e t t e r  s t a b i l i t y  than conventional amines. 
Hindered amines have low o r  no amine degradation. 
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